Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1451–1469 | Cite as

Molecular Characterization, Tissue Distribution and Localization of Larimichthys crocea Kif3a and Kif3b and Expression Analysis of Their Genes During Spermiogenesis

  • Danli Mu
  • Chen Du
  • Suyan Fu
  • Jingqian Wang
  • Congcong Hou
  • Daojun Tang
  • Junquan ZhuEmail author
Article
  • 7 Downloads

Abstract

KIF3A and KIF3B are two N-terminal motor proteins belonging to the kinesin-II superfamily that play essential roles in spermiogenesis. To understand the roles played by KIF3A/3B during spermatogenesis of large yellow croaker Larimichthys crocea, we studied the testis characteristics at different developmental stages of L. crocea, and determined the spatiotemporal expression patterns of kif3a and kif3b during spermiogenesis. Quantitative real-time PCR (qRT-PCR) showed that the overall trends of kif3a/3b mRNA abundance during testis development are similar. From stage II to stage V, kif3a/3b mRNA abundances first increased and then fell after reaching a peak at stage IV. Interestingly, the mRNA abundances of both genes at stage V were higher than those at stages II and III. In addition, it is worth of noting that kif3b mRNA abundance was higher than that of kif3a at all stages. Fluorescence in situ hybridization results revealed that kif3a/3b mRNA abundance dynamics were consistent with the migration of mitochondria, the deformation of nucleus, and the formation of tail. The mRNA hybridization signals of both genes first appeared either around the nuclear periphery or on the side of the nuclei, then appeared at one side of nuclei, and finally were mainly on the tail during spermiogenesis. Our findings contributed to better understanding the molecular mechanisms of spermiogenesis in fish; and suggested that KIF3A and KIF3B may participate in the intracellular transport of mitochondria, nuclear deformation, and the formation of tail during the spermiogenesis in L. crocea.

Key words

Larimichthys crocea kif3a/3b spermiogenesis expression pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to acknowledge Dr. Yaru Xu for the in situ hybridization technical assistance and Mr. Youfa Wang for valuable suggestions on picture processing. This work was financially supported by the Scientific and Technical Project of Zhejiang Province (Nos. 2016C02055-7, LY18C190007), the Ningbo Natural Science Foundation (No. 2016A610081), the Scientific and Technical Project of Ningbo (No. 2015C110005), the National Natural Science Foundation of China (No. 31602140), the Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, and the K. C. Wong Magna Fund in Ningbo University.

References

  1. Berezuk, M. A., and Schroer, T. A., 2004. Fractionation and characterization of kinesin ii species in vertebrate brain. Traffic, 5 (7): 503–513.CrossRefGoogle Scholar
  2. Bot, N. L., Antony, C., White, J., Karsenti, E., and Vernos, I., 1998. Role of xklp3, a subunit of the xenopus kinesin ii heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the golgi apparatus. Journal of Cell Biology, 143 (6): 1559–1573.CrossRefGoogle Scholar
  3. Braubach, P., Lippmann, T., Raoult, D., Lagier, J. C., Anagnostopoulos, I., Zender, S., Länger, F. P., Kreipe, H. H., Kühnel, M. P., and Jonigk, D., 2017. Fluorescencein situhybridization for diagnosis of Whipple’s disease in formalin-fixed paraffin-embedded tissue. Frontiers in Medicine, 4: 87.CrossRefGoogle Scholar
  4. Brown, C. L., Maier, K. C., Stauber, T., Ginkel, L. M., Wordeman, L., Vernos, I., and Schroer, T. A., 2010. Kinesin-2 is a motor for late endosomes and lysosomes. Traffic, 6 (12): 1114–1124.CrossRefGoogle Scholar
  5. Campbell, P. D., and Marlow, F. L., 2013. Temporal and tissue specific gene expression patterns of the zebrafish kinesin-1 heavy chain family, kif5s, during development. Gene Expression Patterns, 13 (7): 271–279.CrossRefGoogle Scholar
  6. Chen, H., Lin, G. W., Liu, Z. K., Chen, W., Xie, Y. Q., and Wang, X. C., 2010. Study on growth characters of cultured Pseudosciaena crocea originated from eastern fujian. Marine Sciences, 34 (11): 1–5.Google Scholar
  7. Cole, D. G., Chinn, S. W., Wedaman, K. P., Hall, K., Vuong, T., and Scholey, J. M., 1993. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature, 366 (6452): 268–270.CrossRefGoogle Scholar
  8. Cooke, H., Hargreave, T., and Elliott, D., 1998. Understanding the genes involved in spermatogenesis: A progress report. Fertility & Sterility, 69 (6): 989–995.CrossRefGoogle Scholar
  9. Dang, R., Zhu, J. Q., Tan, F. Q., Wang, W., Zhou, H., and Yang, W. X., 2012. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Molecular Biology Reports, 39 (5): 5589–5598.CrossRefGoogle Scholar
  10. De, M. V, Burkhard, P., Le, B. N., Vernos, I., and Hoenger, A., 2001. Analysis of heterodimer formation by Xklp3A/B, a newly cloned kinesin-ii from Xenopus laevis. Embo Journal, 20 (13): 3370–3379.CrossRefGoogle Scholar
  11. Dishinger, J. F., Kee, H. L., Jenkins, P. M., Fan, S., Hurd, T. W., Hammond, J. W., Truong, T. T., Margoils, B., Martens, J. R., and Verhey, K. J., 2010. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and Ran-GTP. Nature Cell Biology, 12 (7): 703.CrossRefGoogle Scholar
  12. Duangtum, N., Junking, M., Sawasdee, N., Cheunsuchon, B., Limjindaporn, T., and Yenchitsomanus, P. T., 2011. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B). Biochemical & Biophysical Research Communications, 413 (1): 69–74.CrossRefGoogle Scholar
  13. Fu, S. Y., Jiang, J. H., Yang, W. X., and Zhu, J. Q., 2016. A histological study of testis development and ultrastructural features of spermatogenesis in cultured Acrossocheilus fasciatus. Tissue & Cell, 48 (1): 49–62.CrossRefGoogle Scholar
  14. Ge, S. Q., Kang, X. J., Liu, G. R., and Mu, S. M., 2008. Genes involved in spermatogenesis. Hereditas, 30 (1): 3.CrossRefGoogle Scholar
  15. Gross, S. P., Tuma, M. C., Deacon, S. W., Serpinskaya, A. S., Reilein, A. R., and Gelfand, V. I., 2002. Interactions and regulation of molecular motors in Xenopus melanophores. Journal of Cell Biology, 156 (5): 855.CrossRefGoogle Scholar
  16. Heinrich, B., and Deshler, J., 2009. RNA localization to the balbiani body in Xenopus oocytes is regulated by the energy state of the cell and is facilitated by kinesin II. Rna-A Publication of the Rna Society, 15 (4): 524.CrossRefGoogle Scholar
  17. Henson, J. H., Cole, D. G., Roesener, C. D., Capuano, S., Mendola, R. J., and Scholey, J. M., 1997. The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motility & the Cytoskeleton, 38 (1): 29–37.CrossRefGoogle Scholar
  18. Hirokawa, N., 2010. Stirring up development with the heterotrimeric kinesin KIF3. Traffic, 1 (1): 29–34.CrossRefGoogle Scholar
  19. Hirokawa, N., and Noda, Y., 2008. Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiological Reviews, 88 (3): 1089.CrossRefGoogle Scholar
  20. Hirokawa, N., and Takemura, R., 2004. Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301 (1): 50.CrossRefGoogle Scholar
  21. Hirokawa, N., and Tanaka, Y., 2015. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Experimental Cell Research, 334 (1): 16–25.CrossRefGoogle Scholar
  22. Hirokawa, N., Noda, Y., and Okada, Y., 1998. Kinesin and dynein superfamily proteins in organelle transport and cell division. Current Opinion in Cell Biology, 10 (1): 60.CrossRefGoogle Scholar
  23. Hu, J. R., Xu, N., Tan, F. Q., Wang, D. H., Liu, M., and Yang, W. X., 2012. Molecular characterization of a KIF3A-like kinesin gene in the testis of the chinese fire-bellied newt Cynops orientalis. Molecular Biology Reports, 39 (4): 4207–4214.CrossRefGoogle Scholar
  24. Hu, M., Miao, L., Li, M. Y. L. I., Zhang, H., Wang, J. H., Wang, T. Z., and Pan, N., 2014. Observation and comparison on the ultrastructure of the spermatozoon of Nibea albiflora and Pseudosciaena crocea. Journal of Biology, 31 (2): 1–4 (in Chinese with English abstract).Google Scholar
  25. Huszno, J., and Klag, J., 2012. The reproductive cycle in the male gonads of Danio rerio (teleostei, cyprinidae). Stereological analysis. Micron, 43 (5): 666–672.CrossRefGoogle Scholar
  26. Junco, A., Bhullar, B., Tarnasky, H. A., and Fa, V. D. H., 2001. Kinesin light-chain KLC3 expression in testis is restricted to spermatids, Biology of Reproduction, 64 (5): 1320–1330.CrossRefGoogle Scholar
  27. Le, B. N., Claude, A., Jamie, W., Eric, K., and Isabelle, V., 1998. Role of Xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the Endoplasmic Reticulum and the Golgi Apparatus. Journal of Cell Biology, 143 (6): 1559.CrossRefGoogle Scholar
  28. Lehti, M. S., Kotaja, N., and Sironen, A., 2013. KIF3A is essential for sperm tail formation and manchette function. Molecular & Cellular Endocrinology, 377 (1–2): 44.CrossRefGoogle Scholar
  29. Li, B., Qi, X. Q., Chen, X., Huang, X., Liu, G. Y., Chen, H. R., Huang, C. G., Luo, C., and Lu, Y. C., 2010. Expression of targeting protein for Xenopus kinesin-like protein 2 is associated with progression of human malignant astrocytoma. Brain Research, 1352 (1): 200–207.CrossRefGoogle Scholar
  30. Li, J. C., Jian, M. L., Jing, C., Ye, H. G., Zuo, R. Y., Dai, S. H., Zuo, M. Z., and Jia, H. S., 2003. NYD-SP16, a novel gene associated with spermatogenesis of human testis1. Biology of Reproduction, 68 (1): 190–198.CrossRefGoogle Scholar
  31. Lolkema, M. P., Mans, D. A., Snijckers, C. M., van Noort, M., van Beest, M., Voest, E. E., and Giles, R. H., 2007. The von Hippel-Lindau tumour suppressor interacts with microtubules through kinesin-2. Febs Letters, 581 (24): 4571–4576.CrossRefGoogle Scholar
  32. Lopes, V. S., Jimeno, D., Khanobdee, K., Song, X., Chen, B., Nusinowitz, S., and Williams, D. S., 2010. Dysfunction of heterotrimeric kinesin-2 in rod photoreceptor cells and the role of opsin mislocalization in rapid cell death. Molecular Biology of the Cell, 21 (23): 4076–4088.CrossRefGoogle Scholar
  33. Lu, Y., Wang, Q., Wang, D. H., Zhou, H., Hu, Y. J., and Yang, W. X., 2014. Functional analysis of kIF3A and KIF3B during spermiogenesis of Chinese mitten crab Eriocheir sinensis. PLoS One, 9 (5): e97645.CrossRefGoogle Scholar
  34. Marszalek, J. R., and Goldstein, L. S., 2000. Understanding the functions of kinesin-II. Biochimica et Biophysica Acta, 1496 (1): 142.CrossRefGoogle Scholar
  35. Morris, R. L., and Scholey, J. M., 1997. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. Journal of Cell Biology, 138 (5): 1009.CrossRefGoogle Scholar
  36. Nishimura, T., Kato, K., Yamaguchi, T., Fukata, Y., Ohno, S., and Kaibuchi, K., 2004. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nature Cell Biology, 6 (4): 328–334.CrossRefGoogle Scholar
  37. O’donnell, L., and O’bryan, M. K., 2014. Microtubules and spermatogenesis. Seminars in Cell & Developmental Biology, 30 (6): 45.CrossRefGoogle Scholar
  38. Papah, M. B., Kisia, S. M., Ojoo, R. O., Makanya, A. N., Wood, C. M., Kavembe, G. D., Maina, J. N., Johannsson, O. E., Bergman, H. L., and Laurent, P., 2013. Morphological evaluation of spermatogenesis in lake magadi tilapia (Alcolapia grahami): A fish living on the edge. Tissue & Cell, 45 (6): 371–382.CrossRefGoogle Scholar
  39. Raghupathy, R. K., Zhang, X., Alhasani, R. H., Zhou, X., Mullin, M., Reilly, J., Li, W., Liu, M., and Shu, X., 2016. Abnormal photoreceptor outer segment development and early retinal degeneration in KIF3A mutant zebrafish. Cell Biochemistry & Function, 34 (6): 429–440.CrossRefGoogle Scholar
  40. Takeda, S., Yamazaki, H., Seog, D. H., Kanai, Y., Terada, S., and Hirokawa, N., 2000. Kinesin superfamily protein 3 (KIF3A) motor transports fodrin-associating vesicles important for neurite building. Journal of Cell Biology, 148 (6): 1255–1265.CrossRefGoogle Scholar
  41. Trivedi, D., Colin, E., Louie, C. M., and Williams, D. S., 2012. Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 32 (31): 10587.CrossRefGoogle Scholar
  42. Wang, W., Dang, R., Zhu, J. Q., and Yang, W. X., 2010. Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of Octopus tankahkeei. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 157 (3): 237–245.CrossRefGoogle Scholar
  43. Yamazaki, H., Nakata, T., Okada, Y., and Hirokawa, N., 1994. KIF3B forms a heterodimer with KIF3A and works as a new microtubule-based anterograde motor of membrane organelle transport. Neuroscience Research Supplements, 19: S84.CrossRefGoogle Scholar
  44. Yamazaki, H., Nakata, T., Okada, Y., and Hirokawa, N., 1996. Cloning and characterization of KAP3: A novel kinesin superfamily-associated protein of KIF3A/3B. Proceedings of the National Academy of Sciences of the United States of America, 93 (16): 8443–8448.CrossRefGoogle Scholar
  45. Yang, W. X., Jefferson, H., and Sperry, A. O., 2006. The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biology of Reproduction, 74 (4): 684.CrossRefGoogle Scholar
  46. Yang, Z., and Goldstein, L. S., 1998. Characterization of the KIF3C neural kinesin-like motor from mouse. Molecular Biology of the Cell, 9 (2): 249.CrossRefGoogle Scholar
  47. You, Y., Lin, D., and Chen, L., 2001. Spermatogenesis of teleosts, Pseudosciaena crocea. Zoological Research, 22 (6): 461–466 (in Chinese).Google Scholar
  48. Zhang, D. D., Gao, X. M., Zhao, Y. Q., Hou, C. C., and Zhu, J. Q., 2017. The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea. Fish Physiology & Biochemistry, 43 (5): 1351–1371.CrossRefGoogle Scholar
  49. Zhang, Y., Ou, Y., Cheng, M., Saadi, H. S., Thundathil, J. C., and Fa, V. D. H., 2012. KLC3 is involved in sperm tail mid-piece formation and sperm function. Developmental Biology, 366 (2): 101–110.CrossRefGoogle Scholar
  50. Zhao, C., Omori, Y., Brodowska, K., Kovach, P., and Malicki, J., 2012. Kinesin-2 family in vertebrate ciliogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109 (7): 2388–2393.CrossRefGoogle Scholar
  51. Zhao, Y. Q., Yang, H. Y., Zhang, D. D., Han, Y. L., Hou, C. C., and Zhu, J. Q., 2017. Dynamic transcription and expression patterns of KIF3A and KIF3B genes during spermiogenesis in the shrimp. Palaemon carincauda. Animal Reproduction Science, 184: 59–77.CrossRefGoogle Scholar
  52. Zhou, H., Dong, Y., and Sun, Y., 2013. Detection of KIF2A mRNA in male ejaculate by real-time fluorescence quantitative RTPCR. Acta Universitatis Medicinalis Anhui, 48 (11): 1387–1390.Google Scholar
  53. Zhu, J. Q., Yang, W. X., You, Z. J., Wang, W., and Jiao, H. F., 2006. Ultrastructure of spermatogenesis of Octopus tankahkeei. Journal of Fisheries of China, 4 (2): 161–169 (in Chinese with English abstract).Google Scholar
  54. Zou, Y., Millette, C., and Sperry, A., 2002. KRP3A and KRP3B: Candidate motors in spermatid maturation in the seminiferous epithelium. Biology of Reproduction, 66 (3): 843–855.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Danli Mu
    • 1
  • Chen Du
    • 1
  • Suyan Fu
    • 1
  • Jingqian Wang
    • 1
  • Congcong Hou
    • 1
  • Daojun Tang
    • 1
  • Junquan Zhu
    • 1
    Email author
  1. 1.The Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine SciencesNingbo UniversityNingboChina

Personalised recommendations