Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1382–1394 | Cite as

Paleontological Records of Holocene Environmental Changes offshore, Egypt

  • Rehab ElshanawanyEmail author
  • Yousra Mohamed
  • Mohamed I. A. Ibrahim
Article

Abstract

Paleontological and sedimentological analyses were carried out in sediment core from southeastern Mediterranean Sea, offshore Egypt to reconstruct the past environmental changes in trophic state and temperature during Holocene. To achieve our goals, grain size, total organic carbon, planktic and benthic foraminifera, dinoflagellate cysts have been investigated. Few micropalaentological studies have been done in the studied area and none of them used the combined proxies of benthic foraminifera and dinoflagellate cyst. Theses combined proxies reflects more comprehensive paleoenvironmental view. Biotic and abiotic data have been analysed with multivariate technique including Redundancy Analysis (RDA). Diversity indices such as: Fisher alpha index (α) and Shannon index (H) have been applied. The foraminiferal study yields 9 planktic species and 10 benthic species. Foraminiferal assemblages have low species diversity indices especially at sapropel layer S1. Mediterranean sapropels are layers with elevated organic carbon concentrations that contrast with surrounding organic poor sediments. Sapropels occur periodically in sedimentary sequences of the last millions years, which have been the subject of extensive previous study. Redundancy Analysis (RDA) yields two groups of foraminiferal assemblages depending on the changes of total organic carbon and clay content. The dinocysts study yields 15 species, the majority of cyst types belonging to the order Gonyaulacales. The association of dinoflagellate cyst shows two depositional phases in the sediment. The sapropel layer S1, with anoxic condition and warmer temperature, is recorded at depth 28–46 cm where heterotrophic taxa dominate and the post-sapropel layer is recorded at depth 0–28 cm; where autotrophic taxa dominate.

Key words

dinoflagellate cysts paleoenvironmental changes planktic and benthic foraminifera offshore Egypt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Many thanks to Suzan Kholeif, the professor in National Institute of Oceanography and Fisheries NIOF for providing the core samples of METEOR cruise M70b (October 2006).

References

  1. Abdel-Kireem, M. R., 1984. Planktonic foraminifera of Mokattam Formation (Eocene) of Gebel Mokattam, Cairo, Egypt. Revue de Micropaleontologie, 28: 77–96.Google Scholar
  2. Abu-Zied, R. H., Rohling, E. J., Jorissen, F. J., Fontanier, C., James S. L. Casford, J. S. L., and Cooke, S., 2008. Benthic foraminiferal response to changes in bottom-water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to recent times. Marine Micropaleontology, 67: 46–68.CrossRefGoogle Scholar
  3. Aurahs, R., Treis, Y., Darling, K., and Kucera, M., 2011. A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Marine Micropaleontology, 79: 1–14.CrossRefGoogle Scholar
  4. Badawi, A., 2015. Late quaternary glacial/interglacial cyclicity models of the Red Sea. Environmental Earth Sciences, 73: 961–977.CrossRefGoogle Scholar
  5. Bé, A. W. H., and Tolderlund, D. S., 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In: The Micropaleontology of Oceans. Funnel, B. M., and Riedel, W. R., eds., 105–149.Google Scholar
  6. Belmonte, G., Castello, P., Piccinni, M. R., Quarta, S., Rubino, F., Boero, F., and Geraci, S., 1995. Resting stages in marine sediments off the Italian coasts. In: Biology and Ecology of Shallow Coastal Waters. Eletheriou, A., Ansell, A. D., and Smith, C. J., eds., Olsen and Olsen, Fredensborg, 53–58.Google Scholar
  7. Bernhard, J., and Sen Gupta, B., 1999. Foraminifera of oxygen-depleted environments. In: Modern Foraminifera. Gupta, S., ed., Kluwer Acaemic Publishers, New York, 201–216.CrossRefGoogle Scholar
  8. Bernhardt, C., Horton, B. P., and Stanley, D. J., 2012. Nile Delta response to holocene climate variability. Geology, 40 (7): 615–618.CrossRefGoogle Scholar
  9. éthoux, J. P., and Pierre, C., 1999. Mediterranean functioning and sapropel formation: Respective influences of climate and hydrological changes in the Atlantic and the Mediterranean. Marine Geology, 153: 29–39.CrossRefGoogle Scholar
  10. Bickert, T., and Wefer, G., 1999. South Atlantic and benthic foraminifer δ13C deviations: Implications for reconstructing the Late Quaternary deep-water circulation. Deep Sea Research II, 46: 437–452.CrossRefGoogle Scholar
  11. Bijma, J., Erez, J., and Hemleben, C., 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research, 20: 117–127.CrossRefGoogle Scholar
  12. Bolli, H. M., 1950. The direction of coiling in the evolution of some Globorotaliidae. Contributions from the Cushman Foundation for Foraminiferal Research, 1: 82–89.Google Scholar
  13. Bradford, M. R., and Wall, D. A., 1984. The distribution of organic-walled dinoflagellate cysts in the Persian Gulf, Gulf of Oman, and northwestern Arabian Sea. Paleontographica, 192: 16–84.Google Scholar
  14. Candela, J., 1991. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dynamics of Atmospheres and Oceans, 15: 267–299.CrossRefGoogle Scholar
  15. Cramp, A., and O’Sullivan, G., 1999. Neogene sapropel in the Mediterranean: A review. Marine Geology, 153: 11–28.CrossRefGoogle Scholar
  16. Dale, B., 1976. Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord, Norway. Review of Palaeobotany and Palynology, 22: 39–60.CrossRefGoogle Scholar
  17. Dale, B., 1996. Dinoflagellate cyst ecology: Modeling and geological applications. In: Palynology: Principles and Applications. Jansonius, J., and McGregor, D. C., eds., American Association of Stratigraphic Palynologists Foundation, Dallas, 1249–1276.Google Scholar
  18. de Rijk, S., Jorissen, F., Rohling, E., and Troelstra, S., 2000. Organic flux control on bathymetric zonation of Mediterranean benthic foraminifera. Marine Micropalaeotology, 40: 151–166.CrossRefGoogle Scholar
  19. de Vernal, A., and Marret, F., 2007. Organic-walled dinoflagellates: Tracers of sea-surface conditions. In: Proxies in Late Cenozoic Paleoceanography. Hillaire-Marcel, C., and de Vernal, A., eds., Elsevier, 371–408.Google Scholar
  20. Elshanawany, R., Zonneveld, K., Ibrahim, M. L., and Kholeif, S. E., 2010. Distribution patterns of recent organic-walled dinoflagellate cyst in relation to environmental parameters in the Mediterranean Sea. Palynology, 2: 233–260.CrossRefGoogle Scholar
  21. Elshanawany, R., Ibrahim, M. I., Milker, Y., Schmiedl, G., Kholeif, S. E., Badr, N., and Zonneveld, K. A., 2011. Anthropogenic impact on benthic foraminifera, Abu-Qir Bay, Alexandria, Egypt. Journal of Foraminiferal Research, 41: 326–348.CrossRefGoogle Scholar
  22. Fisher, R. A., Corbet, A. S., and Williams, C. B., 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12: 42–58.CrossRefGoogle Scholar
  23. Foucault, A., and Stanley, D., 1989. Late Quaternary paleoclimatic oscillations in East Africa recorded by heavy minerals in the Nile delta. Nature, 399: 44–46.CrossRefGoogle Scholar
  24. Gaines, G., and Elbraechter, M., 1987. Heterotrophic nutrition. In: The biology of dinoflagellates. Taylor, F. J. R., ed., Blackwell Scientific, Oxford, 224–281.Google Scholar
  25. Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews, 19: 189–211.CrossRefGoogle Scholar
  26. Gaudette, H., Flight, W., Toner, L., and Folger, D., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44: 249–253.Google Scholar
  27. Harland, R., Pudsey, C. J., Howe, J. A., and Fitzpatrick, M. E., 1998. Recent dinoflagellate cysts in a transect from the Falklands through to the Weddell Sea, Antarctica. Palaeontology, 41: 1093–1131.Google Scholar
  28. Jain, S., Collins, L. S., and Hayek, L. C., 2007. Relationship of benthic foraminiferal diversity to paleoproductivity in the Neogene Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology, 255: 223–245.CrossRefGoogle Scholar
  29. Jenkins, D., 1967. Recent distribution, origin, and coiling ratio changes in Globorotalia pachyderma (Ehrenberg). Micropaleontology, 13: 195–203.CrossRefGoogle Scholar
  30. Jorissen, F. J., De Stigter, H., and Widmark, J., 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26: 3–15.CrossRefGoogle Scholar
  31. Kholeif, S. E. A., 2008. Palynofacies is a useful tool to study the palaeoenvironmental conditions of the water columin: An example from southeastern Mediterranean. Egyptian Journal of Aquatic research, 34: 110–126.Google Scholar
  32. Kholeif, S. E. A., and Mudie, P. J., 2009. Palynomorph and amorphous organic matter records of climate and oceanic conditions in Late Pleistocene and Holocene sediments of the Nile Cone, southeastern Mediterranean. Palynology, 32: 1–24.CrossRefGoogle Scholar
  33. Kholeif, S. E. A., and Ibrahim, M. I., 2010. Palynofacies Analysis of Inner Continental Shelf and Middle Slope Sediments offshore Egypt, South-eastern Mediterranean. Geobios, 43: 333–347.CrossRefGoogle Scholar
  34. Krom, M. D., Groom, S., and Zohary, T., 2003. The Eastern Mediterranean. In: the Biogeochemistry of Marine Systems. Black, K. D. S. G. B., ed., Blackwell, 91–126.Google Scholar
  35. Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., and Hemleben, C., 2007. Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by Benthic Foraminifera. Marine Micropaleontology, 64: 141–162.CrossRefGoogle Scholar
  36. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the earth. Astronomy and Astrophysics, 428: 261–285.CrossRefGoogle Scholar
  37. Leps, J., and Smilauer, P., 2005. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, 269pp.Google Scholar
  38. Leyer, I., and Wesche, K., 2007. Multivariate Statistik in der Ökologie. Springer, Berlin Heidelberg, 221pp.Google Scholar
  39. Loeblich, A. R., and Tappan, H., 1987. Foraminiferal General and their Classification. van Nostrand Reinhold Comp., New York, 1182pp.Google Scholar
  40. Mackensen, A., Grobe, H., Hubberten, H. W., and Kuhn, G., 1994. Benthic foraminiferal assemblages and the 13C signal in the Atlantic sector of the Southern Ocean: Glacial to interglacial contrasts. In: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change, NATO ASI Series I. Zahn, R., Pedersen, T. F., Kaminski, M. A. and Labeyrie, L., eds., 105–144.CrossRefGoogle Scholar
  41. Marret, F., 1994. Distribution of Dinoflagellate cysts in recent marine sediments from the east Equatorial Atlantic (Gulf of Guinea). Review of Palaeobotany and Palynology, 84: 1–22.CrossRefGoogle Scholar
  42. Marret, F., and de Vernal, A., 1997. Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. Marine Micropaleontology, 29: 367–392.CrossRefGoogle Scholar
  43. Marret, F., and Zonneveld, K. A., 2003. Atlas of Modern organic-walled dinoflagellate cyst distributions. Review of Palaeobotany and Palynology, 125: 1–200.CrossRefGoogle Scholar
  44. Marret, F., Mudie, P. J., Aksu, A. E., and Hiscott, R., 2007. A Holoscene dinocyst record of a two-step transformation of the Neoeuxinian brackish water lake into the Black Sea. Quaternary International, 197: 72–86.CrossRefGoogle Scholar
  45. Mojtahid, M., Manceau, R., Schiebel, R., Hennekam, R., and De Lange, G. J., 2015. 13000 years of southeastern Mediterranean climate variability inferred from an integrative planktic foraminiferal-based approach. Paleoceanography and Paleoclimatology, 30: 402–422.CrossRefGoogle Scholar
  46. Murray, J. W., 1991. Ecology and paleoecology of benthonic foraminifera, 397pp. London, New York, Longman Scientific and Technical/Wiley.Google Scholar
  47. Murat, A., and Got, H., 2000. Organic carbon variations of the eastern Mediterranean Holocene sapropel: A key for understanding formation processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 158: 241–257.CrossRefGoogle Scholar
  48. Nikolaev, S., Oskina, N., Blyum, N., and Bubenshchikova, N., 1998. Neogene-Quaternary variations of the ‘Pole-Equator’ temperature gradient of the surface oceanic waters in the North Atlantic and North Pacific. Global and Planetary Change, 18: 85–111.CrossRefGoogle Scholar
  49. Pospelova, V., Chmura, G. L., and Walker, H. A., 2004. Environmental factors influencing the spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England (USA). Review of Palaeobotany and Palynology, 128: 7–34.CrossRefGoogle Scholar
  50. Pospelova, V., and Kim, S. J., 2010. Dinoflagellate cysts in recent estuarine sediment from aquaculture sites of southern South Korea. Marine Micropaleontology, 76: 37–51.CrossRefGoogle Scholar
  51. Psarra, S., Tselepidesa, A., and Ignatiades, L., 2000. Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): Seasonal and interannual variability. Progress in Oceanography, 46: 187–204.CrossRefGoogle Scholar
  52. Psarra, S., Zohary, T., Krom, M. D., Fauzi-Mantoura, R. F. C., Polychronaki, T., Stambler, N., Tanaka, T., Tselepides, A., and Thingstad, T. F., 2005. Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean). Deep Sea Research II, 52: 2944–2960.CrossRefGoogle Scholar
  53. Rochon, A., de Vernal, A., Turon, J. L., Matthiessen, J., and Head, M. J., 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface sediments parameters. American Association of Stratigraphic Palynologists Contribution Series, 35: 1–150.Google Scholar
  54. Rohling, E. J., 1994. Review and new aspects concerning the formation of eastern Mediterranean sapropels. Marine Geology, 122: 1–28.CrossRefGoogle Scholar
  55. Rohling, E. J., Marino, G., and Grant, K. M., 2015. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, 143: 62–97.CrossRefGoogle Scholar
  56. Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology, 49: 237–263.CrossRefGoogle Scholar
  57. Sangiorgi, F., and Donders, T. H., 2004. Reconstructing 150 years of eutrophication in the north western Adriatic Sea (Italy) using dinoflagellate cysts, pollen and spores. Estuarine, Coastal and Shelf Science, 60: 69–79.CrossRefGoogle Scholar
  58. Sangiorgi, F., Capotondi, L., and Brinkhuis, H., 2002. Acentennial scale organic walled dinoflagellate cyst record of the last deglaciation in the South Adriatic Sea (Central Mediterranean). Paleogeography, Palaeoclimatology, Palaeoecology, 186: 199–216.CrossRefGoogle Scholar
  59. Sangiorgi, F., Capotondi, L., Combourieu Nebout, N., Vigliotti, L., Brinkhuis, H., Giunta, S., Lotter, A. F., Morigi, C., Negri, A., and Reichart, G. J., 2005. Holocene seasonal sea-surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach. Journal of Quaternary Science, 18: 723–732.CrossRefGoogle Scholar
  60. Schmidt, D. N. S., Renaud, J., Bollmann, R., Schiebel, H. R., and Thierstein, R., 2004. Size distribution of Holocene planktic foraminifer assemblages: Biogeography, ecology and adaptation. Marine Micropaleontology, 50: 319–338.CrossRefGoogle Scholar
  61. Schmiedl, G., Hemleben, C., Keller, J., and Segl, M., 1998. Impact of climatic changes on the benthic foraminiferal fauna in the Ionian Sea during the last 330, 0000 years. Paleoceanography and Paleoclimatology, 13: 447–458.CrossRefGoogle Scholar
  62. Schmuker, B., and Schiebel, R., 2002. Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea. Marine Micropaleontology, 46: 387–403.CrossRefGoogle Scholar
  63. Scrivner, A. E., Vance, D., and Rohling, E. J., 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geology, 32: 565–568.CrossRefGoogle Scholar
  64. Sen Gupta, B., and Machain-Castillo, M., 1993. Benthic foraminifera on oxygen-poor habitats. Marine Micropaleontology, 20: 183–201.CrossRefGoogle Scholar
  65. Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal, 27: 379–423, 623–656.CrossRefGoogle Scholar
  66. Stanley, D. J., and Maldonado, A., 1977. Nile Cone: Late quaternary stratigraphy and sediment dispersal. Nature, 266: 129–135.CrossRefGoogle Scholar
  67. Sweet, S., Laswell, S., and Wade, T., 1998. Sediment grain size analysis: Gravel, sand, silt and clay. In: Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project 1993–1996 Update. Lauenstein, G. G., and Cantillo, A. Y., eds., NOAA Technical Memorandum NOS ORCA, 130pp.Google Scholar
  68. Taylor, F. J. R., and Pollingher, U., 1987. The ecology of dinoflagellates. In: The Biology of Dinoflagellates. Taylor, F. J. R., ed., Blackwell Scientific Publications, Oxford, 398–529.Google Scholar
  69. Ter-Braak, C. J. F., and Smilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide (Version 4.5). Microcomputer power Ithaka, NY, 500pp.Google Scholar
  70. Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt, E. D., Tselepides, A., and van Wambeke, F., 2000. Relationship between primary producers and bacteria in an oligotrophic sea — the Mediterranean and biogeochemical implications. Marine Ecology Progress Series, 193: 11–18.CrossRefGoogle Scholar
  71. van Helmond, N. A. G. M., Hennekam, R., Donders, T. H., Bunnik, F. P. M., de Lange, G. J., Brinkhuis, H., and Sangiorgi, F., 2015. Marine productivity leads organic matter preservation in sapropel S1: Palynological evidence from a core east of the Nile River outflow. Quaternary Science Reviews, 108: 130–138.CrossRefGoogle Scholar
  72. Versteegh, G. J. M., and Zonneveld, K. A. F., 2002. Use of selective degradation to separate preservation from productivity. Geology, 30: 615–618.CrossRefGoogle Scholar
  73. Wall, D., Dale, B., Lohman, G. P., and Smith, W. K., 1977. The environmental and climatic distribution of dinoflagellate cysts in the North and South Atlantic Oceans and adjacent seas. Marine Micropaleontology, 12: 121–200.CrossRefGoogle Scholar
  74. Williams, M., Adamson, D., Cock, B., and Mc Evedy, R., 2000. Late quaternary environments in the White Nile region, Sudan. Global and Planetary Change, 26: 305–316.CrossRefGoogle Scholar
  75. Yacobi, Y. Z., Zohari, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M., Wood, A. M., and Li, W. K. W., 1995. Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. Journal of Marine System, 6: 179–189.CrossRefGoogle Scholar
  76. Zargouni, I., Turon, J., Londeix, L., Essallami, L., Kallel, N., and Sicre, M., 2010. Environmental and climatic changes in the central Mediterranean Sea (Siculo-Tunisian Strait) during the last 30 ka based on dinoflagellate cyst and planktonic foraminifera assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 285: 17–29.CrossRefGoogle Scholar
  77. Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J., 2001. Palaeoproductivity and postdepositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the eastern Mediterranean S1 sapropel. Marine Geology, 172: 181–195.CrossRefGoogle Scholar
  78. Zonneveld, K. A. F., Versteegh, G. J. M., and Kodrans-Nsiah, M., 2008. Preservation and organic chemistry of Late Cenozoic organic-walled dinoflagellate cysts: A review. Marine Micropaleontology, 68: 179–197.CrossRefGoogle Scholar
  79. Zonneveld, K. A. F, Chen, L., Möbius, J., and Mahmoud, M. S., 2009. Environmental significance of dinoflagellate cysts from the proximal part of the Po-river discharge plume (off southern Italy, Eastern Mediterranean). Journal of Sea Research, 62: 189–213.CrossRefGoogle Scholar
  80. Zonneveld, K. A. F., Chen, L., Elshanawany, R., Fischer, H. W., Hoins, M., Ibrahim, M. I., Pittauerova, D., and Versteegh, G. J., 2012. The use of dinoflagellate cysts to separate human-induced from natural variability in the trophic state of the Po-River discharge plume over the last two centuries. Marine Pollution Bulletin, 64: 114–132.CrossRefGoogle Scholar
  81. Zonneveld, K. A. F., and Pospelova, V., 2015. A determination key for modern dinoflagellate cysts. Palynology, 39: 387–409.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Rehab Elshanawany
    • 1
    • 2
    Email author
  • Yousra Mohamed
    • 2
  • Mohamed I. A. Ibrahim
    • 2
  1. 1.MARUM, Leobener StraßeUniversity of BremenBremenGermany
  2. 2.Faculty of ScienceAlexandria UniversityMoharam BeyEgypt

Personalised recommendations