Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1344–1350 | Cite as

Mechanical Properties of Methane Hydrate-Bearing Interlayered Sediments

  • Lin Dong
  • Yanlong Li
  • Changling LiuEmail author
  • Hualin LiaoEmail author
  • Guoqi Chen
  • Qiang Chen
  • Lele Liu
  • Gaowei Hu
Article
  • 23 Downloads

Abstract

The complex distribution of gas hydrate in sediments makes understanding the mechanical properties of hydrate-bearing sediments a challenging task. The mechanical behaviors of hydrate-bearing interlayered sediments are still poorly known. A series of triaxial shearing tests were conducted to investigate the strength parameters and deformation properties of methane hydrate-bearing interlayered sediments at the effective pressure of 1 MPa. The results indicate that the stress-strain curves of hydrate-bearing interlayered sediments are significantly different from that of hydrate-bearing sediments. The peak strength, Young’s modulus, initial yielding modulus, and failure mode are deeply affected by the methane hydrate distribution. The failure behaviors and mechanism of strain softening and hardening patterns of the interlayered specimens are more complicated than those of the integrated specimens. This study compares the different mechanical behaviors between integrated and interlayered specimens containing gas hydrate, which can serve as a reference for the prediction and analysis of the deformation behaviors of natural gas hydrate reservoirs.

Key words

gas hydrate interlayered sediments mechanical property triaxial shearing tests strength parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 41976074), National Key Research and Development Plan (No. 2017YFC030 7600), the Taishan Scholar Special Experts Project (No. ts201712079), Qingdao National Laboratory for Marine Science and Technology (No. QNLM2016ORP0207), and the Graduate School Innovation Program of China University of Petroleum (East China) (No. YCX2019020). These financial supports are gratefully acknowledged.

References

  1. Ajayi, T., Anderson, B. J., Seol, Y., Boswell, R., and Myshakin, E. M., 2018. Key aspects of numerical analysis of gas hydrate reservoir performance: Alaska North Slope Prudhoe Bay Unit ‘L-Pad’ hydrate accumulation. Journal of Natural Gas Science and Engineering, 51: 37–43.CrossRefGoogle Scholar
  2. Boswell, R., 2009. Is gas hydrate energy within reach? Science, 325: 957–958.CrossRefGoogle Scholar
  3. Boswell, R., Schoderbek, D., Collett, T. S., Ohtsuki, S., White, M., and Anderson, B. J., 2016. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs. Energy & Fuels, 31: 140–153.CrossRefGoogle Scholar
  4. Chong, Z. R., Yin, Z., Tan, J. H. C., and Linga, P., 2017. Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach. Applied Energy, 204: 1513–1525.CrossRefGoogle Scholar
  5. Feng, Y., Chen, L., Suzuki, A., Kogawa, T., Okajima, J., Komiya, A., and Maruyama, S., 2019. Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization. Energy, 166: 1106–1119.CrossRefGoogle Scholar
  6. Hyodo, M., Li, Y., Yoneda, J., Nakata, Y., Yoshimoto, N., Nishimura, A., and Song, Y., 2013. Mechanical behavior of gas-saturated methane hydrate-bearing sediments. Journal of Geophysical Research: Solid Earth, 118: 5185–5194.Google Scholar
  7. Hyodo, M., Wu, Y., Nakashima, K., Kajiyama, S., and Nakata, Y., 2017. Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments. Journal of Geophysical Research: Solid Earth, 122: 7511–7524.Google Scholar
  8. Kajiyama, S., Hyodo, M., Nakata, Y., Yoshimoto, N., Wu, Y., and Kato, A., 2017. Shear behaviour of methane hydrate bearing sand with various particle characteristics and fines. Soils and Foundations, 57: 176–193.CrossRefGoogle Scholar
  9. Konno, Y., Fujii, T., Sato, A., Akamine, K., Naiki, M., Masuda, Y., Yamamoto, K., and Nagao, J., 2017. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production. Energy & Fuels, 31 (3): 2607–2616.CrossRefGoogle Scholar
  10. Li, Y., Liu, C., Liu, L., Chen, Q., and Hu, G., 2017a. Mechanical properties of methane hydrate-bearing unconsolidated sediments. Journal of China University of Petroleum (Edition of Natural Science), 41 (3): 105–113 (in Chinese with English abstract).Google Scholar
  11. Li, Y., Hu, G., Liu, C., Wu, N., Chen, Q., Liu, L., and Li, C., 2017b. Gravel sizing method for sand control packing in hydrate production test wells. Petroleum Exploration and Development, 44: 1016–1021.CrossRefGoogle Scholar
  12. Lin, J., Uchida, S., Myshakin, E. M., Seol, Y., Rutqvist, J., and Boswell, R., 2018. Assessing the geomechanical stability of interbedded hydrate-bearing sediments under gas production by depressurization at NGHP-02 Site 16. Marine and Petroleum Geology,  https://doi.org/10.1016/j.marpetgeo.2018.08.018.
  13. Liu, C., Meng, Q., He, X., Li, C., Ye, Y., Zhang, G., and Liang, J., 2015. Characterization of natural gas hydrate recovered from Pearl River Mouth Basin in South China Sea. Marine and Petroleum Geology, 61: 14–21.CrossRefGoogle Scholar
  14. Liu, C., Meng, Q., Hu, G., Li, C., and Sun, J., 2017. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea. Interpretation, 5: 1–39.CrossRefGoogle Scholar
  15. Liu, L., Zhang, X., Liu, C., and Ye, Y., 2016. Triaxial shearing tests and statistical analyses of damage for methane hydrate-bearing sediments. Chinese Journal of Theoretical and Applied Mechanics, 48 (3): 720–729.Google Scholar
  16. Liu, W., Zhao, J., Luo, Y., Song, Y., Li, Y., Yang, M., Zhang, Y., Liu, Y., and Wang, D., 2013. Experimental measurements of mechanical properties of carbon dioxide hydrate-bearing sediments. Marine and Petroleum Geology, 46: 201–209.CrossRefGoogle Scholar
  17. Luo, T., Song, Y., Zhu, Y., Liu, W., Liu, Y., Li, Y., and Wu, Z., 2016. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea. Marine and Petroleum Geology, 77: 507–514.CrossRefGoogle Scholar
  18. Masui, A., Haneda, H., Ogata, Y., and Aoki, K., 2007. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan. In: Proceedings of the Seventh ISOPE Ocean Mining Symposium. International Society of Offshore and Polar Engineers, Lisbon, Portugal, 53–56.Google Scholar
  19. Miyazaki, K., Masui, A., Sakamoto, Y., Aoki, K., Tenma, N., and Yamaguchi, T., 2011. Triaxial compressive properties of artificial methane-hydrate-bearing sediment. Journal of Geophysical Research: Solid Earth, 116: B06102.Google Scholar
  20. Pinkert, S., Grozic, J., and Priest, J., 2015. Strain-softening model for hydrate-bearing sands. International Journal of Geomechanics, 15 (6): 04015007.CrossRefGoogle Scholar
  21. Santamarina, J. C., Dai, S., Terzariol, M., Jang, J., Waite, W. F., Winters, W. J., Nagao, J., Yoneda, J., Konno, Y., Fujii, T., and Suzuki, K., 2015. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Marine and Petroleum Geology, 66: 434–450.CrossRefGoogle Scholar
  22. Smith, W. E., Priest, J. A., and Hayley, J. L. H., 2018. Influence of vertical cylindrical tetrahydrofuran hydrate veins on finegrained soil behaviour. Canadian Geotechnical Journal, 55 (12): 1691–1701.CrossRefGoogle Scholar
  23. Sloan, E. J., 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426: 353–363.CrossRefGoogle Scholar
  24. Uchida, S., Klar, A., and Yamamoto, K., 2016. Sand production model in gas hydrate-bearing sediments. International Journal of Rock Mechanics and Mining Sciences, 86: 303–316.CrossRefGoogle Scholar
  25. Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., Jang, J., Jung, J. W., Kneafsey, T. J., Shin, H., Soga, K., Winters, W. J., and Yun, T. S., 2009. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 47 (4): RG4003.CrossRefGoogle Scholar
  26. Yoneda, J., Masui, A., Konno, Y., Jin, Y., Egawa, K., Kida, M., Ito, T., Nagao, J., and Tenma, N., 2015a. Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Marine and Petroleum Geology, 66: 451–459.CrossRefGoogle Scholar
  27. Yoneda, J., Masui, A., Konno, Y., Jin, Y., Egawa, K., Kida, M., Ito, T., Nagao, J., and Tenma, N., 2015b. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern Nankai Trough. Marine and Petroleum Geology, 66: 471–486.CrossRefGoogle Scholar
  28. Yoneda, J., Masui, A., Konno, Y., Jin, Y., Kida, M., Katagiri, J., Nagao, J., and Tenma, N., 2017. Pressure-core-based reservoir characterization for geomechanics: Insights from gas hydrate drilling during 2012–2013 at the eastern Nankai Trough. Marine and Petroleum Geology, 86: 1–16.CrossRefGoogle Scholar
  29. Zhou, M., Soga, K., and Yamamoto, K., 2018. Upscaled anisotropic methane hydrate critical state model for turbidite hydrate-bearing sediments at east Nankai Trough. Journal of Geophysical Research: Solid Earth, 123: 1–22.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Lin Dong
    • 1
    • 2
  • Yanlong Li
    • 2
    • 3
  • Changling Liu
    • 2
    • 3
    Email author
  • Hualin Liao
    • 1
    Email author
  • Guoqi Chen
    • 1
    • 2
  • Qiang Chen
    • 2
    • 3
  • Lele Liu
    • 2
    • 3
  • Gaowei Hu
    • 2
    • 3
  1. 1.School of Petroleum EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.The Key Laboratory of Gas Hydrate, Qingdao Institute of Marine GeologyMinistry of Natural ResourcesQingdaoChina
  3. 3.Laboratory for Marine Mineral ResourcesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations