Advertisement

Journal of Ocean University of China

, Volume 18, Issue 2, pp 293–304 | Cite as

Optimized Numerical Model Based Assessment of Wave Power Potential of Marmara Sea

  • Yasin AbdollahzadehmoradiEmail author
  • Mehmet Özger
  • Abdüsselam Altunkaynak
Article
  • 25 Downloads

Abstract

Marmara Sea, located between Black Sea and Aegean Sea, is an important sea for ocean engineering activities. In this study, wave power potential of Marmara Sea was investigated using the third generation spectral wind-wave model MIKE 21 SW with unstructured mesh. Wind data was obtained from ECMWF ERA-Interim re-analyses wind dataset at 10 m with a spatial resolution of 0.1° for the period of 1994 to 2014. The numerical model was calibrated with measured wave data from a buoy station located in Marmara Sea. Mesh optimization was also performed to obtain the most suitable mesh structure for the study area. This study is the first that dealt with the determination of wave energy potential of Marmara Sea. The numerical model results are presented in terms of monthly, seasonal and annual average of wave power flux (kW m−1). The maximum wave power flux is 1.13 kW m−1 and occurs in November. The overall annual mean wave power flux during 1994–2014 is found to be 0.27 kW m−1 in the offshore regions.

Key words

Marmara Sea MIKE 21 SW wave power potential ECMWF buoy wave data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was funded by TÜBITAK (The Scientific and Technological Research Council of Turkey) (No. 112M 413). We thank the European Centre for Medium-Range Weather Forecasts for providing the wind data, the Marine Geoscience Data System for providing the bathymetry data, and Turkish Petroleum for providing the buoy wave data.

References

  1. Abdollahzadehmoradi, Y., Özger, M., and Altunkaynak, A., 2018. Long–term macro–scale assessment of wave power of Black Sea by an optimized numerical model. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 42 (4): 1–24. DOI: 10.1007/s40996–018–0108–1.CrossRefGoogle Scholar
  2. Akpınar, A., and Kömürcü, M. I., 2013. Assessment of wave energy resource of the Black Sea based on 15–year numerical hindcast data. Applied Energy, 101: 502–512. DOI: 10.1016/j.apenergy.2012.06.005.CrossRefGoogle Scholar
  3. Akpınar, A., Bingölbali, B., and Van vledder, G. P., 2017. Longterm analysis of wave power potential in the Black Sea, based on 31–year SWAN simulations. Ocean Engineering, 130: 482–497. DOI: 10.1016/j.oceaneng.2016.12.023.CrossRefGoogle Scholar
  4. Alonso, R., Solari, S., and Teixeira, L., 2015. Wave energy resource assessment in Uruguay. Energy, 93: 683–696. DOI: 10. 1016/j.energy.2015.08.114.CrossRefGoogle Scholar
  5. Altunkaynak, A., and Nigussie, T. A., 2015. Prediction of daily rainfall by a hybrid wavelet–season–neuro technique. Journal of Hydrology, 529: 287–301. DOI: 10.1016/j.jhydrol.2015.07.046.CrossRefGoogle Scholar
  6. Arslan, O., 2010. Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 35: 120–131. DOI: 10.1016/j.energy.2009.09.002.CrossRefGoogle Scholar
  7. Aydoğan, B., Ayat, B., and Yüksel, Y., 2013. Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, 57: 436–447. DOI: 10.1016/j.renene.2013.01.047.CrossRefGoogle Scholar
  8. Besio, G., Mentaschi, L., and Mazzino, A., 2016. Wave energy resource assessment in the Mediterranean Sea on the basis of a 35–year hindcast. Energy, 94: 50–63. DOI: 10.1016/j.energy. 2015.10.044.CrossRefGoogle Scholar
  9. Camus, P., Losada, I. J., Izaguirre, C., Espejo, A., Menéndez, M., and Pérez, J., 2017. Statistical wave climate projections for coastal impact assessments. Earth’s Future, 5: 918–933. DOI: 10.1002/2017EF000609.CrossRefGoogle Scholar
  10. Chong, W. Z., and Chong, Y. L., 2015. Variation of the wave energy and significant wave height in the China Sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43: 381–387. DOI: 10.1016/j.rser.2014.11.001.CrossRefGoogle Scholar
  11. Coe, R. G., Yu, Y.–H., and van Rij, J., 2018. A survey of WEC reliability, survival and design practices. Energies, 11 (1): 4. DOI: 10.3390/en11010004.CrossRefGoogle Scholar
  12. Cornett, A. M., 2008. A global wave energy resource assessment. In: The Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference. Vancouver, 318–326.Google Scholar
  13. Cruz, J., 2008. Ocean Wave Energy: Current Status and Future Prespectives. Springer Berlin Heidelberg, 431pp.CrossRefGoogle Scholar
  14. Defne, Z., Haas, K. A., and Fritz, H. M., 2009. Wave power potential along the Atlantic coast of the southeastern USA. Renewable Energy, 34 (10): 2197–2205. DOI: 10.1016/j.renene.2009.02.019.CrossRefGoogle Scholar
  15. DHI, 2012. MIKE 21 spectral wave module. Scientific documentation, DHI Water & Environment.Google Scholar
  16. Gray, A., Dickens, B., Bruce, T., Ashton, I., and Johanning, L., 2017. Reliability and O&M sensitivity analysis as a consequence of site specific characteristics for wave energy converters. Ocean Engineering, 141: 493–511. DOI: 10.1016/j.oceaneng.2017.06.043.CrossRefGoogle Scholar
  17. Hoel, M., and Kverndokk, S., 1996. Depletion of fossil fuels and the impacts of global warming. Resource and Energy Economics, 18 (2): 115–136. DOI: 10.1016/0928–7655(96)00005–X.CrossRefGoogle Scholar
  18. Iglesias, G., and Carballo, R., 2009. Wave energy resource in the Estaca de Bares area (Spain). Renewable Energy, 35: 1574–1584. DOI: 10.1016/j.renene.2009.10.019.CrossRefGoogle Scholar
  19. Iglesias, G., López, M., Carballo, R., and Castro, A., Fraguela, J. A., and Frigaard, P., 2009. Wave energy potential in Galicia (NW Spain). Renewable Energy, 34 (11): 2323–2333. DOI: 10.1016/j.renene.2009.03.030.CrossRefGoogle Scholar
  20. Jadidoleslam, N., Özger, M., and Ağıralioğlu, N., (2016). Wave power potential assessment of Aegean Sea with an integrated 15–year data. Renewable Energy, 86: 1045–1059. DOI: 10. 1016/j.renene.2015.09.022.Google Scholar
  21. Jose, F., and Stone, G. W., 2006. Forecast of nearshore wave heights using MIKE–21 spectral wave model. Gulf Coast Association of Geological Societies Transactions, 56: 323–327.Google Scholar
  22. Kick, C., 2011. How is 100% renewable energy possible for Turkey by 2020? Global Energy Network Institute (GENI), http://www.geni.org/.Google Scholar
  23. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., 1996. Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge, 560pp.Google Scholar
  24. Liberti, L., Carillo, A., and Sannino, G., 2013. Wave energy resource assessment in the Mediterranean, the Italian perspective. Renewable Energy, 50: 938–949. DOI: 10.1016/j.renene.2012.08.023.CrossRefGoogle Scholar
  25. Mackay, E. B. L., Bahaj, A. S., and Challenor, P. G., 2010b. Uncertainty in wave energy resource assessment. Part 2: Variability and predictability. Renewable Energy, 35 (8): 1809–1819. DOI: 10.1016/j.renene.2009.10.027.CrossRefGoogle Scholar
  26. Mackay, E. B. L., Bahaj, A. S., and Challenor, P. G., 2010a. Uncertainty in wave energy resource assessment. Part 1: Historic data. Renewable Energy, 35 (8): 1792–1808. DOI: 10. 1016/j. renene.2009.10.026.CrossRefGoogle Scholar
  27. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., and Veith, T. L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3): 885–900.CrossRefGoogle Scholar
  28. Mørk, G., Barstow, S., Kabuth, A., and Pontes, M. T., 2010. Assessing the global wave energy potential. In: Proceedings of OMAE2010 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering. Shanghai, 6–11.Google Scholar
  29. Neill, S. P., Lewis, M. J., Hashemi, M. R., Slater, E., Lawrence, J., and Spall, S. A., 2014. Inter–annual and inter–seasonal variability of the Orkney wave power resource. Applied Energy, 132: 339–348.CrossRefGoogle Scholar
  30. Ramanarayanan, T. S., Williams, J. R., Dugas, W. A., Hauck, L. M., and McFarland, A. M. S., 1997. Using APEX to identify alternative practices for animal waste management: Part II. Model application. ASAE Paper 97–2209.Google Scholar
  31. Reeve, D. E., Chen, Y., Pan, S., Magar, V., Simmonds, D. J., and Zacharioudaki, A., 2011. An investigation of the impacts of climate change on wave energy generation: The Wave Hub, Cornwall, UK. Renewable Energy, 36 (9): 2404–2413. DOI: 10.1016/j.renene.2011.02.020.CrossRefGoogle Scholar
  32. Reguero, B. G., Losada, I. J., and Méndez, F. J., 2015. A global wave power resource and its seasonal, interannual and longterm variability. Applied Energy, 148: 366–380. DOI: 10.1016/j.apenergy.2015.03.114.CrossRefGoogle Scholar
  33. Rusu, E., and Soares, C. G., 2009. Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore. Renewable Energy, 34: 1501–1516. DOI: 10. 1016/j.renene.2008.10.027.CrossRefGoogle Scholar
  34. Rusu, L., and Soares, C. G., 2012. Wave energy assessments in the Azores islands. Renewable Energy, 45: 183–196. DOI: 10. 1016/j.renene.2012.02.027.CrossRefGoogle Scholar
  35. Saket, A., and Etemad–Shahidi, A., 2012. Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 40: 90–97. DOI: 10.1016/j.renene.2011.09.024.CrossRefGoogle Scholar
  36. Santo, H., Taylor, P. H., Eatock Taylor, R., and Stansby, P., 2016. Decadal variability of wave power production in the North–East Atlantic and North Sea for the M4 machine. Renewable Energy, 91: 442–450. DOI: 10.1016/j.renene.2016.01.086.CrossRefGoogle Scholar
  37. Sierra, J. P., Casas–Prat, M., and Campins, E., 2017. Impact of climate change on wave energy resource: The case of Menorca (Spain). Renewable Energy, 101: 275–285. DOI: 10.1016/j.renene.2016.08.060.CrossRefGoogle Scholar
  38. Sierra, J. P., Martín, C., Mösso, C., Mestres, M., and Jebbad, R., 2016. Wave energy potential along the Atlantic coast of Morocco. Renewable Energy, 96: 20–32. DOI: 10.1016/j.renene. 2016.04.071.CrossRefGoogle Scholar
  39. Thies, P. R., Smith, G. H., and Johanning, L., 2012. Addressing failure rate uncertainties of marine energy converters. Renewable Energy, 44: 359–367. DOI: http://dx.doi.org/10.1016/j.renene.2012.02.007.CrossRefGoogle Scholar
  40. Young, I. R., 1999. Wind Generated Ocean Waves. Ocean Engineering Book Series, Vol. 2. Elsevier, Oxford, 92pp.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Yasin Abdollahzadehmoradi
    • 1
    Email author
  • Mehmet Özger
    • 1
  • Abdüsselam Altunkaynak
    • 1
  1. 1.Hydraulics Division, Department of Civil EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations