Skip to main content
Log in

Geochemical Characteristics of the Trace and Rare Earth Elements in Reef Carbonates from the Xisha Islands (South China Sea): Implications for Sediment Provenance and Paleoenvironment

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Based on the concentrations of the trace elements, rare earth elements (REE), and Sr isotopic compositions in reef carbonates from the well ‘Xike-1’ reef core of the Xisha Islands, the constraints on sediment provenance and paleoenvironment were defined. Variations of the terrigenous input into the paleoseawater were traced in detail and the paleoenvironment and sediment provenance were further investigated. The results show that the HREE/LREE values in the reef carbonates are negatively associated with their Th and Al concentrations; however, their Al and Th concentrations show positive correlation. The lowest 87Sr/86Sr values in the reef carbonates generally coincide with the lowest values of Al, Th concentrations and the highest values of HREE/LREE. These data indicate that the HREE/LREE, Al concentrations, and Th concentrations of the reef carbonates are useful indexes for evaluating the influence of the terrigenous inputs on the seawater composition in the study area. From top to bottom, the changing process of the HREE/LREE values and Al, Th concentrations can be divided into 6 intervals; they are H1 (0–89.30 m, about 0–0.11 Myr), L1 (89.30–198.30 m, about 0.11–2.2Myr), H2 (198.30–374.95 m, about 2.2–5.3Myr), D (374.95–758.40 m, about 5.3–13.6 Myr), L2 (758.40–976.86m, about 13.6–15.5Myr), and H3 (976.86–1200.00m, about 15.5–21.5Myr). Moreover, the changing trend of the HREE/LREE values coincides with that of the seawater δ13C values recorded by benthonic foraminiferal skeletons from the drill core of ODP site 1148 in the South China Sea (SCS), but not with that of the seawater δ18O values. The high uplifting rates of the Qinghai-Tibet Plateau coincide with the high Th and Al concentrations and the low HREE/LREE values in the reef carbonates. These data indicate that the main factors controlling the changes of terrigenous flux in the SCS are the tectonic activities associated with Qinghai-Tibet Plateau uplifting and the variations of uplifting rates rather than paleoclimatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostou, E., Sherrell, R. M., Gagnon, A., LaVigne, M., Field, M. P., and McDonough, W. F., 2011. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochimica et Cosmochimica Acta, 75: 2529–2543.

    Article  Google Scholar 

  • Armid, A., Asami, R., Fahmiati, T., Sheikh, M. A., Fujimura, H., Higuchi, T., Taira, E., Shinjo, R., and Oomori, T., 2011. Sea-water temperature proxies based on DSr, DMg, and DU from culture experiments using the branching coral Porites cylindrical. Geochimica et Cosmochimica Acta, 75: 4273–4285.

    Article  Google Scholar 

  • Bachtel, S. L., Kissling, R. D., Martono, D., Rahardjanto, S. P., Dunn, P. A., and MacDonald, B. A., 2004. Seismic stratigraphic evolution of the Miocene-Pliocene Segitiga Platform, East Natuna Sea, Indonesia: The origin, growth, and demise of an isolated carbonate platform. In: Seismic Imaging of Carbonate Reservoirs and Systems. Erberli, G. P., et al., eds., American Association of Petroleum Geologists, Tulsa, Oklahoma, 309–328.

    Google Scholar 

  • Bi, D. J., Zhang, D. J., Zhai, S. K., Liu, X. Y., Xiu, C., Zhang, A. B., and Cao, J. Q., 2017. The coupling relationships among the Qinghai-Tibet Plateau uplifting, the Qiongdongnan Basin subsiding and the Xisha Islands’ reefs developing. Haiyang Xuebao, 39(1): 52–63 (in Chinese with English abstract).

    Google Scholar 

  • Brand, U., and Veizer, J., 1980. Chemical diagenesis of a multi-component carbonate system-1: Trace elements. Journal of Sedimentary Research, 50(4): 1219–1236.

    Google Scholar 

  • Brand, U., and Veizer, J., 1981. Chemical diagenesis of a multi-component carbonate system-2: Stable isotopes. Journal of Sedimentary Research, 51(3): 987–997.

    Google Scholar 

  • Bruckschen, P., Bruhn, F., Meijer, J., Stephan, A., and Veizer, J., 1995. Diagenetic alteration of calcitic fossil shells: Proton microprobe (PIXE) as a trace element tool. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 104(1): 427–431.

    Article  Google Scholar 

  • Chappel, J., and Shackleton, N. J., 1986. Oxygen isotopes and sea level. Nature, 324(6093): 134–140.

    Article  Google Scholar 

  • Chen, T., and Yu, K., 2011. P/Ca in coral skeleton as a geochemical proxy for seawater phosphorus variation in Daya Bay, northern South China Sea. Marine Pollution Bulletin, 62: 2114–2121.

    Article  Google Scholar 

  • Davies, T. A., Hay, W. W., Southam, J. R., and Worsley, T. R., 1977. Estimates of Cenozoic oceanic sedimentation rates. Science, 197(4298): 53–55.

    Article  Google Scholar 

  • Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H., and Swett, K., 1989. Sr isotopic variations in upper proterozoic carbonates from Svalbard and east Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331–2339.

    Article  Google Scholar 

  • Edwards, C. T., Saltzman, M. R., Leslie, S. A., Bergström, S. M., Sedlacek, A. R. C., Howard, A., Bauer, J. A., Sweet, W. C., and Young, S. A., 2015. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 127(9): B31149.1.

    Google Scholar 

  • Frimmel, H. E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258: 338–353.

    Article  Google Scholar 

  • Hastings, D., Emerson, S., and Mix, A., 1996. Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments. Paleoceanography, 11: 665–678.

    Article  Google Scholar 

  • Hess, J., Bender, M. L., and Schilling, J. G., 1986. Evolution of the ratio of strontium-87 to strontium-86 in seawater from cretaceous to present. Science, 231(4741): 979–984.

    Article  Google Scholar 

  • Huang, S. J., Huang, K. K., Jie, L., and Lan, Y. F., 2012. Carbon isotopic composition of early Triassic marine carbonates, eastern Sichuan Basin, China. Science China: Earth Sciences, 55(12): 2026–2038.

    Article  Google Scholar 

  • Huang, S. J., Wang, C. M., Huang, P. P., Zou, M. L., Wang, Q. D., and Gao, X. Y., 2008. Scientific research frontiers and considerable questions of carbonate diagenesis. Journal of Chengdu University of Technology (Science & Technology Edition), 35(1): 1–10 (in Chinese with English abstract).

    Google Scholar 

  • Huang, W., and Wang, P. X., 2006. The sedimentary quantity and distribution of the South China Sea since Oligocene. Science China: Earth Sciences, 36(9): 822–829 (in Chinese with English abstract).

    Google Scholar 

  • Jiang, X. D., and Li, Z. X., 2014. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nature Communications, 5: 5453–5459.

    Article  Google Scholar 

  • Johnson, M. R. W., 1994. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts. Journal of the Geological Society, 151(2): 217–220.

    Article  Google Scholar 

  • Kamber, B. S., Bolhar, R., and Webb, G. E., 2004. Geochemistry of late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas. Precambrian Research, 132: 379–399.

    Article  Google Scholar 

  • Kaufman, A. J., and Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27–49.

    Article  Google Scholar 

  • Kaufman, A. J., Jacobsen, S. B., and Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120(3): 409–430.

    Article  Google Scholar 

  • Kaufman, A. J., Knoll, A. H., and Awramik, S. M., 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology, 20(2): 181–185.

    Article  Google Scholar 

  • Kawabe, I., Toriumi, T., Ohta, A., and Miura, N., 1998. Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect. Geochemical Journal, 32(4): 213–229.

    Article  Google Scholar 

  • Korte, C., Kozur, H. W., Bruckschen, P., and Veizer, J., 2003. Strontium isotope evolution of late Permian and Triassic sea-water. Geochimica et Cosmochimica Acta, 67(1): 47–62.

    Article  Google Scholar 

  • Kump, L. R., and Arthur, M. A., 1997. Global chemical erosion during the Cenzooic: Weather ability balances the budgets. In: Tectonic Uplift and Climate Change. Ruddiman, W. F., ed., Plenum Press, New York, 399–426.

    Chapter  Google Scholar 

  • Li, D., Shields-Zhou, G. A., Ling, H. F., and Thirlwall, M., 2011. Dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks. Chemical Geology, 290(3-4): 133–144.

    Article  Google Scholar 

  • Li, S. L., Li, S. Q., Yang, W. D., Chen, Y. X., and Long, J. P., 2002. Oxygen and carbon isotopic record of foraminiferal crusts from HY126EA1 hole in the continental shelf of the East China Sea. Haiyang Xuebao, 24(3): 52–63 (in Chinese with English abstract).

    Google Scholar 

  • Liu, J. N., Ye, Z. Z., Han, C. R., Liu, X. B., and Qu, G. S., 1997. Meteoric diagenesis in Pleistocene reef limestones of Xisha Islands, China. Journal of Asian Earth Sciences, 15(6): 465–476.

    Article  Google Scholar 

  • Ma, Z. L., Zhu, Y. H., Liu, X. Y., Luo, W., Ma, R. F., and Xu, S. L., 2015. Quaternary calcareous alga and its ecological function from the ZK-1 well in Xisha Islands. Earth Science — Journal of China University of Geoscience, 40(4): 718–724 (in Chinese with English abstract).

    Article  Google Scholar 

  • Molnar, P., 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annual Review of Earth & Planetary Sciences, 32: 67–89.

    Article  Google Scholar 

  • Morford, J. L., and Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimca et Cosmochimca Acta, 63: 1735–1750.

    Article  Google Scholar 

  • Nothdurft, L. D., Webb, G. E., and Kamber, B. S., 2004. Rare earth element geochemistry of late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68: 263–283.

    Article  Google Scholar 

  • Qiao, P. J., Zhu, W. L., Shao, L., Zhang, D. J., Cheng, X. R., and Sun, Y. M., 2015. Carbonate stable isotope stratigraphy of well XK1, Xisha Islands. Earth Science — Journal of China University of Geoscience, 40(4): 725–732 (in Chinese with English abstract).

    Article  Google Scholar 

  • Riebe, C. S., Kirchner, J. W., and Finkel, R. C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224: 547–562.

    Article  Google Scholar 

  • Sarnthein, M., Pflaumann, U., Wang, P. X., and Wong, H. K., 1994. Preliminary report on Sonne-95 cruise ‘Monitor Monsoon’ to the South China Sea; Manila-Guangzhou-Hongkong-Kota Kinabalu-Hongkong; 16 April-8 June 1994. Berichte-Reports. Geologisch-Palaeontologisches Institut und Museum, Christian-Albrechts-Universitaet Kiel, 68: 5–39.

    Google Scholar 

  • Shao, L., Cui, Y. C., Qiao, P. J., Zhang, D. J., Liu, X. Y., and Zhang, C. L., 2017. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 485(1): 504–516.

    Article  Google Scholar 

  • Shi, X. B., Zhou, D., Qiu, X. L., and Zhang, Y. X., 2002. Thermal and rheological structures of the Xisha Trough, South China Sea. Tectonophysics, 351(4): 285–300.

    Article  Google Scholar 

  • Taylor, S. R., and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 1–312.

    Google Scholar 

  • Ullmann, C. V., Frei, R., Korte, C., and Lüter, C., 2017. Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization. Chemical Geology, 460(5): 15–24.

    Article  Google Scholar 

  • Umbgrove, J. H. F., 1947. Coral reefs of the East Indies. Geological Society of America Bulletin, 58(8): 729–778.

    Article  Google Scholar 

  • Veizer, J., and Compston, W., 1976. 87Sr/86Sr in precambrian carbonates as an index of crustal evolution. Geochimica et Cosmochimica Acta, 40(8): 905–914.

    Article  Google Scholar 

  • Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., Mcmanus, J. F., Lambeck, K., Balbona, E., and Labracheriee, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1): 295–305.

    Article  Google Scholar 

  • Wang, C. Y., He, X. X., and Qiu, S. Y., 1979. Preliminary study on the carbonate rocks and microfossils of the well ‘Xiyong-1’, Xisha Islands. Petroleum Geology and Experiment, 1: 23–38 (in Chinese).

    Google Scholar 

  • Wang, P. X., 1995. ODP and Qinghai-Tibet Plateau. Advances in Earth Sciences, 10(3): 254–257 (in Chinese with English abstract).

    Google Scholar 

  • Wang, P. X., Zhao, Q. H., Jian, Z. M., Cheng, R. X., Huang, W., Tian, J., Wang, J. L., Li, Q. Y., Li, B. H., and Su, X., 2003. The deep sea records of the past 30 Ma in the South China Sea. Chinese Science Bulletin, 48(21): 2206–2215 (in Chinese with English abstract).

    Article  Google Scholar 

  • Wang, W., Guo, J., Cai, G., and Wang, D., 2018. Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea. Journal of Ocean University of China, 17(1): 118–128.

    Article  Google Scholar 

  • Wang, Z. F., Cui, Y. C., Shao, L., Zhang, D. J., Dong, X. X., Liu, X. Y., Zhang, C. L., You, L., and Xiao, A. T., 2015. Carbonate platform development and sea level variations of Xisha Islands-based on BIT index results of Well XK1. Earth Science-Journal of China University of Geoscience, 40(5): 900–908 (in Chinese with English abstract).

    Article  Google Scholar 

  • Webb, G. E., and Kamber, B. S., 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimca et Cosmochimca Acta, 64: 1557–1565.

    Article  Google Scholar 

  • Wei, G. J., Sun, M., Li, X., and Nie, B., 2000. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 162: 59–74.

    Article  Google Scholar 

  • Xi, W., Fu, D. J., Yan, X. W., Zhu, Y. J., Zhao, G. C., Xi, L. Y., and Han, C. Y., 2005. Constraints on biogenetic reef formation during evolution of the South China Sea and exploration potential analysis. Earth Science Frontiers, 12(3): 245–252.

    Google Scholar 

  • Xia, K. Y., 1996. The Geophysics and Oil & Gas Resources of the Nansha Islands and Their Adjacent Sea Area. Science Press, Beijing, 113–120 (in Chinese).

    Google Scholar 

  • Xie, Y., Wu, T., Sun, J., Zhang, H., Wang, J., Gao, J., and Chen, C., 2018. Sediment compaction and pore pressure prediction in deepwater basin of the South China Sea: Estimation from ODP and IODP drilling well data. Journal of Ocean University of China, 17(1): 25–34.

    Article  Google Scholar 

  • Xiu, C., 2016. Reef development and environmental evolution in Shi Island, Xisha Islands since the Neogene. PhD thesis. Ocean University of China, 48–90.

  • Xiu, C., Luo, W., Yang, H. J., Zhai, S. K., Liu, X. Y., Cao, J. Q., Liu, X. F., Chen, H. Y., and Zhang, A. B., 2015. Carbonate stable isotope stratigraphy of well Xike-1, Xisha Islands. Earth Science — Journal of China University of Geoscience, 40(4): 645–652 (in Chinese with English abstract).

    Article  Google Scholar 

  • You, L., Yu, Y. P., Liao, J., Liu, L., Liu, N., Zhao, S., and Li, X., 2015. Quaternary petrological characteristics and pore types and their formation mechanism near the typical exposed surface in Well Xike-1. Earth Science — Journal of China University of Geoscience, 40(4): 671–676 (in Chinese with English abstract).

    Article  Google Scholar 

  • Zhai, S. K., Mi, L. J., Shen, X., Liu, X. Y., Xiu, C., Sun, Z. P., and Cao, J. Q., 2015. Mineral compositions and their environmental implications in reef of Shidao Island, Xisha. Earth Science-Journal of China University of Geoscience, 40(4): 597–605 (in Chinese with English abstract).

    Article  Google Scholar 

  • Zhang, L., Li, W. C., and Zeng, X. H., 2003. Stratigraphic sequence and hydrocarbon potential in Lile Basin. Petroleum Geology and Experiment, 25(5): 469–472 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, M. S., Liu, J., and Zhou, M. Q., 1994. Study on magnetic susceptibility of the well ‘Xiyong-1’. Chinese Science Bulletin, 39(4): 340–343 (in Chinese with English abstract).

    Article  Google Scholar 

  • Zhao, M. Y., and Zheng, Y. F., 2014. Marine carbonate records of terrigenous input into paleotethyan seawater: Geochemical constraints from carboniferous limestones. Geochimica et Cosmochimica Acta, 141: 508–531.

    Article  Google Scholar 

  • Zhao, Q. H., and Wang, P. X., 1999. The advances on the Quaternary paleoceanography in the South China Sea. Quaternary Sciences, 6(3): 481–501 (in Chinese with English abstract).

    Google Scholar 

  • Zhao, Q. H., Jian, Z. M., Wang, J. L., Cheng, X. R., Huang, B. Q., Xu, J., Zhou, Z., Fang, D. Y., and Wang, P. X., 2001. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Science in China (Series D: Earth Sciences), 44(10): 934–942.

    Article  Google Scholar 

  • Zhao, S., Zhang, D. J., Liu, L., You, L., Liu, N., Xiao, A. T., Yu, Y. P., and Li, X., 2015. Petrographic characteristics of Quaternary reef-carbonate diagnosis from Xike 1 well, the Xisha Islands, South China Sea. Earth Science — Journal of China University of Geoscience, 40(5): 900–908 (in Chinese with English abstract).

    Google Scholar 

  • Zhao, Y. Y., Zheng, Y. F., and Chen, F., 2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, 265: 345–362.

    Article  Google Scholar 

  • Zhu, W. L., Wang, Z. F., Mi, L. J., Du, X. B., Xie, X. N., Lu, Y. C., Zhang, D. J., Sun, Z. P., Xiu, X. Y., and You, L., 2015. Sequence stratigraphic framework and reef growth unit of borehole XK-1 from Paracel Islands, South China Sea. Earth Science-Journal of China University of Geoscience, 40(4): 677–687 (in Chinese with English abstract).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Major Project (No. 2011ZX050 25-002-03), the Project of China National Offshore Oil Corporation (CNOOC) Limited (No. CCL2013ZJFNO729) and the National Natural Science Foundation of China (No. 41530963). The authors would thank Prof. Yanyan Zhao for her help concerning improvement to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikui Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, D., Zhai, S., Zhang, D. et al. Geochemical Characteristics of the Trace and Rare Earth Elements in Reef Carbonates from the Xisha Islands (South China Sea): Implications for Sediment Provenance and Paleoenvironment. J. Ocean Univ. China 18, 1291–1301 (2019). https://doi.org/10.1007/s11802-019-3790-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3790-0

Key words

Navigation