Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 203–209 | Cite as

Genetic Parameters of Body Length and Response to Selection for Growth Across Four Generations of Artemia sinica

  • Zhangwei Kong
  • Jie KongEmail author
  • Sheng Luan
  • Zhiwei Zhang
  • Chifang Yu
  • Kun Luo
Article
  • 6 Downloads

Abstract

To investigate the genetic components of growth in the brine shrimp Artemia sinica, we estimated the genetic parameters of body length and the response to selection using a fully pedigreed population of A. sinica. The base population was generated from four wild founder populations. We tested 4160 offspring in 360 families over four generations for growth and survival performance. Across four generations, we produced full- and half-sib families with nested mating, where two dams were mated to the same sire. Individual body length was measured for each nauplius at day 20 post-hatching. Heritability of body length was estimated across four generations with the restricted maximum likelihood method. The heritability of body length in A. sinica was low (0.14 ± 0.05), and the common environmental effect was 0.14 ± 0.02. We estimated the response to selection for body length by calculating the difference in the mean breeding values between different generations. The accumulated genetic gain in body length was 278.94 μm after three generations of selection. This low response to selection was probably caused by the low heritability of body length, small sample size, and the low selection intensity (50%). The results suggest that A. sinica selective breeding programs must be changed to generate any substantial, sustainable genetic increases in body length. We suggest that optimal genetic gains could be achieved by introducing wild strains into the nuclear breeding population to increase genetic variation, and by increasing the size of the breeding population to allow for increased selection intensity.

Key words

Artemia sinica body length heritability selection responses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 31502163).

References

  1. Andriantahina, F., Liu, X., Huang, H., and Xiang, J., 2012. Response to selection, heritability and genetic correlations between body weight and body size in Pacific white shrimp, Litopenaeus vannamei. Chinese Journal of Oceanology and Limnology, 30: 200–205.CrossRefGoogle Scholar
  2. Argue, B. J., Arce, S. M., Lotz, J. M., and Moss, S. M., 2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 204: 447–460.CrossRefGoogle Scholar
  3. Barigozzi, C., 1974. Artemia: A survey of its significance in genetic problems. Evolutionary Biology, 7: 221–252.Google Scholar
  4. Briskia, E., Stappenb, G. V., Bossierb, P., and Sorgeloosb, P., 2008. L–aboratory production of early hatching Artemia sp. cysts by selection. Aquaculture, 282: 19–25.CrossRefGoogle Scholar
  5. Browne, R. A., Sallee, S. E., Grosch, D. S., Segreti, W. O., and Purser, S. M., 1984. Partitioning genetic and environmental components of reproduction and life span in Artemia. Ecology, 65: 949–960.CrossRefGoogle Scholar
  6. Brzeski, V. J., and Doyle, R. W., 1995. A test of an on–farm selection procedure for tilapia growth in Indonesia. Aquaculture, 137: 219–230.CrossRefGoogle Scholar
  7. Charo–Karisa, H., Komen, H., Reak, M. A., Ponzoni, R. W., Arendonk, J. A. M., and Bovenhuis, H., 2006. Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low–input earthen ponds. Aquaculture, 261: 479–486.CrossRefGoogle Scholar
  8. Dunham, R. A., 2006. Comparison of six generations of selection, interspecific hybridization, intraspecific crossbreeding and gene transfer for growth improvement in Ictalurus catfish. Aquaculture, 272 (2): S252–S253.Google Scholar
  9. Eknath, A. E., Tayamen, M. M., Palada de Vera, M. S., Danting, J. C., Reyes, R. A., Dionissio, E. E., Capili, J. B., Bolivar, H. L., Abella, T. A., Circa, A. V., Bensten, H. B., Gjerde, B., Gjedrem, T., and Pullin, R. S. V., 1993. Genetic improvement of farmed Tilapias: The performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture, 111: 171–188.CrossRefGoogle Scholar
  10. Elvingson, P., and Johansson, K., 1993. Genetic and environmental components of variation in body traits of rainbow trout (Oncorhynchus mykiss) in relation to age. Aquaculture, 118: 191–204.CrossRefGoogle Scholar
  11. Falconer, D. S., and Mackay, T. F. C., 1996. Introduction to Quantitative Genetics. 4th edition. Longman Group Ltd., London, 480pp.Google Scholar
  12. Fjalestad, K. T., Carr, W. H., Lotz, W. H., Sweeney, J. N., and Gjedrem, T., 1997. Genetic variation and selection response in body weight and disease resistance in Pacific white shrimp (Penaeus vannamei). An abstract of the Sixth International Symposium on Genetics in Aquaculture, 24–28.Google Scholar
  13. Fjalestad, K. T., Gjedrem, T., Carr, W. H., and Sweeney, J. N., 1997. The shrimp breeding program. Selective breeding of Penaeus vannamei. AKVAFORSK, Report no 17/97, 85pp.Google Scholar
  14. Friars, G. W., Bailey, J. K., and Coombs, K. A., 1990. Correlated responses to selection for grilse length in Atlantic salmon. Aquaculture, 85: 171–176.CrossRefGoogle Scholar
  15. Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R., 2009. ASReml User Guide Release 3.0. VSN International Ltd., Hemel Hempstead.Google Scholar
  16. Gitterle, T., Rye, M., Salte, R., Cock, J., Johansen, H., Lozano, C., Arturo Suárez, J., and Gjerde, B., 2005a. Genetic (co) variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 243: 83–92.CrossRefGoogle Scholar
  17. Gitterle, T., Salte, R., Gjerde, B., Cock, J., Johansen, H., Salazar, C., and Rye, M., 2005b. Genetic (co)variation in resistance to White Spot Syndrome Virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture, 246: 139–149.CrossRefGoogle Scholar
  18. Gjedrem, T., and Rye, M., 2016. Selection response in fish and shellfish: A review. Reviews in Aquaculture, 0: 1–12.Google Scholar
  19. Gjerde, B., 1986. Growth and reproduction in fish and shellfish. Aquaculture, 57: 37–55.CrossRefGoogle Scholar
  20. Gjerde, B., and Korsvoll, S. A., 1999. Realized selection differentials for growth rate and early sexual maturity in Atlantic salmon. Towards Predictable Quality, Abstracts of Contributions Presented at the Aquaculture Europe 99. European Aquaculture Society Special Publication 27, Oostende, Belgium, 73–74.Google Scholar
  21. Goyard, E., Patrois, J., Peignon, J. M., Vanaa, V., Dufour, R., and Viallon, J., 2002. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture, 204: 461–468.CrossRefGoogle Scholar
  22. Hetzel, D. J. S., Crocos, P. J., Davis, G. P., Moore, S. S., and Preston, N. C., 2000. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture, 181: 215–223.CrossRefGoogle Scholar
  23. Hung, D., Vu, N. T., Nguyen, N. H., Ponzoni, R. W., Hurwood, D. A., and Mather, P. B., 2013. Genetic response to combined family selection response in aquaculture selection for improved mean harvest weight in giant prawn (Macrobracium rosenbergii) in Vietnam. Aquaculture, 412–413: 70–73.CrossRefGoogle Scholar
  24. Jiang, L. J., Hou, L., Zou, X. Y., Zhang, R. F., Wang, J. Q., Sun, W. J., Zhao, X. T., and An, J. L., 2007. Cloning and expression analysis of p26 gene in Artemia sinica. Acta Biochimica et Biophysica Sinica, 39: 351–358.CrossRefGoogle Scholar
  25. Kenway, M., Macbeth, M., Salmon, M., McPhee, C., Benzie, J., Wilson, K., and Knibb, W., 2006. Heritability and genetic correlations of growth and survival in black tiger prawn Penaeus monodon reared in tanks. Aquaculture, 259: 138–145.CrossRefGoogle Scholar
  26. Leger, P., Bengtson, D. A., Simpson, K. L., and Sorgeloos, P., 1986. The use and nutritional value of Artemia as food source. Oceanography and Marine Biology, An Annual Review, 24: 521–623.Google Scholar
  27. Liu, J., Lai, Z., Fu, X., Wu, Y., Bao, X., and Hu, Z., 2015. Genetic parameters and selection responses for growth and survival of the small abalone Haliotis diversicolor after four generations of successive selection. Aquaculture, 436: 58–64.CrossRefGoogle Scholar
  28. Luan, S., Yang, G. L., Wang, J. Y., Luo, K., Zhang, Y. F., Gao, Q., Hu, H. L., and Kong, J., 2012. Genetic parameters and response to selection for harvest body weight of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 362–363: 88–96.CrossRefGoogle Scholar
  29. Maluwa, A. O., and Gjerde, B., 2007. Response to selection for harvest body weight of Oreochromis shiranus. Aquaculture, 273: 33–41.CrossRefGoogle Scholar
  30. Nguyen, N. H., Khaw, H. L., Ponzoni, R. W., Hamzah, A., and Kamaruzzaman, N., 2007. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means? Aquaculture, 272: 38–46.CrossRefGoogle Scholar
  31. Ninh, N. H., Ponzoni, R. W., Nguyen, N. H., Woolliams, J. A., Taggart, J. B., and McAndrew, B. J., 2013. A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): Responses to selection. Aquaculture, 408–409: 152–259.CrossRefGoogle Scholar
  32. Pérez–Rostro, C. I., and Ibarra, A. M., 2003. Heritabilities and genetic correlations of size traits atharvest size in sexually dimorphic Pacific white shrimp (Litopenaeus vannamei) grown in two environments. Aquaculture Research, 34: 1079–1085.CrossRefGoogle Scholar
  33. Preston, N. P., Crocos, P. J., Keys, S. J., Coman, G. J., and Koenig, R., 2004. Comparative growth of selected and nonselected Kuruma shrimp Penaeus (Marsupeaeus japonicus) in commercial farm ponds; implications for broodstock production. Aquaculture, 231: 73–82.CrossRefGoogle Scholar
  34. Raikow, D. E., 2006. Sensitivity of aquatic invertebrate resting eggs to SeaKleen (Menadione): A test of potential ballast tank treatment options. Environmental Toxicology and Chemistry, 25: 552–559.CrossRefGoogle Scholar
  35. Shirdhankar, M. M., Thomas, P. C., and Barve, S. K., 2003. Phenotypic estimates and heritability values of Artemia franciscana. Aquaculture Research, 35: 35–39.CrossRefGoogle Scholar
  36. Sorgeloos, P., Dhert, P., and Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200: 147–159.CrossRefGoogle Scholar
  37. Sui, J., Luan S., Luo, K., Meng, X. H., Cao, B. X., Liu N., Li, W. J., Lu, X., and Kong, J., 2016. Genetic parameters and response to selection of harvest body weight of the Chinese shrimp Fenneropenaeus chinensis after five generations of multi–trait selection. Aquaculture, 452: 134–141.CrossRefGoogle Scholar
  38. Sui, J., Luan, S., Luo, K., Meng, X. H., Lu, X., Cao, B. X., Li, W. J., Chai, Z., Liu, N., Xu, S. Y., and Kong, J., 2015. Genetic parameters and response to selection for harvest body weight of pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 1: 1–9.Google Scholar
  39. Tackaert, W., Vanhaecke, P., and Sorgeloos, P., 1987. Preliminary data on the heritability of some quantitative characteristics in Artemia. In: Artemia Research and Its Applications, Vol. 1. Sorgeloos, P., et al., eds., Universa Press, Wetteren, 241–224, 380.Google Scholar
  40. Tan, J., Luan, S., Luo, K., Guan, J. T., Li, W. J., Sui, J., Guo, Z. J., Xu, S. Y., and Kong, J., 2016. Heritability and genotype by environment interactions for growth and survival in Litopenaeus vannamei at low and high densities. Aquaculture Research, 48: 1430–1438.CrossRefGoogle Scholar
  41. Vehviläinen, H., Kause, A., Quinton, C., Koskinen, H., and Paananen, T., 2008. Survival of the currently fittest: Genetics of rainbow trout survival across time and space. Genetics, 180: 507–516.CrossRefGoogle Scholar
  42. Villanueva, B., and Woolliams, J. A., 1997. Optimization of breeding programmes under index selection and constrained inbreeding. Genetics Research, 69: 145–158.CrossRefGoogle Scholar
  43. Zheng, L. P., Hou, L., Chang, A. K., Yu, M., Ma, J., Li, X., and Zou, X. Y., 2011. Expression pattern of a gram–negative bacteria–binding protein in early embryonic development of Artemia sinica and after bacterial challenge. Developmental Comparative Immunology, 35: 35–43.CrossRefGoogle Scholar
  44. Zhou, Q., Wu, C. G., Dong, B., Liu, F. Q., and Xiang, J. H., 2008. The encysted dormant embryo proteome of Artemia sinica. Marine Biotechnology, 10: 438–446.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhangwei Kong
    • 1
    • 2
  • Jie Kong
    • 2
    • 3
    Email author
  • Sheng Luan
    • 2
    • 3
  • Zhiwei Zhang
    • 2
  • Chifang Yu
    • 2
  • Kun Luo
    • 2
    • 3
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  3. 3.Laboratory for Marine Fisheries Sciences and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations