Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 20–30 | Cite as

Numerical Study on Seasonal Transportation of the Suspended Sediments in the Modern Yellow River Mouth Effected by the Artificial Water and Sediment Regulation

  • Nan Wang
  • Lulu QiaoEmail author
  • Guangxue Li
  • Yi Zhong
  • Dehai Song
  • Dong Ding
  • Fei Gao
  • Fengying Ji
Article
  • 20 Downloads

Abstract

Since 2002, an artificial water and sediment regulation (AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth (YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.

Key words

Yellow River Mouth artificial water and sediment regulation MIKE suspended-sediment transport seasonal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41476030, U1706215, and 41406081), the Project of Taishan Scholar. We thank Drs. Chuanyan Zhou, Zhigang Yao, and Yang Ding for their advices. We are also grateful to the anonymous reviewers for their constructive comments and suggestions to improve the manuscript.

References

  1. DHI, 2012a. MIKE 21 & MIKE 3 Flow Model FM. Hydrodynamic and transport module scientific documentation, Release 2012, (D.H.I). Dissertation, Danish Hydraulic Institute.Google Scholar
  2. DHI, 2012b. MIKE 21 Spectral Wave Module. User guide and scientific documentation, release 2012, (D.H.I). Danish Hydraulic Institute.Google Scholar
  3. DHI, 2012c. MIKE 21 & MIKE 3 Flow Model FM. Mud transport module scientific documentation, Release 2012, (D.H.I). Danish Hydraulic Institute.Google Scholar
  4. Ding, Y. F., and Pan, S. M., 2008. Analysis on the evolutionary characteristics of annual runoff and sediment flux distribution of the Yellow River. Marine Science Bulletin, 27 (3): 49–56 (in Chinese with English abstract).Google Scholar
  5. Ekebjærg, L., and Justesen, P., 1991. An explicit scheme for advection–diffusion modelling in two dimensions. Computer Methods in Applied Mechanics and Engineering, 88 (3): 287–297.CrossRefGoogle Scholar
  6. Fredsoe, J., 1984. Turbulent boundary layer in wave–current motion. Journal of Hydraulic Engineering–ASCE, 110 (8): 1103–1120.CrossRefGoogle Scholar
  7. Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Mann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973. Measurements of Wind–Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches Institut, Hamburg, 1–95.Google Scholar
  8. Hu, C. H., Ji, Z. W., and Wang, T., 1996. Characteristics of ocean dynamics and sediment diffusion in the Yellow River Estuary. Journal of Sediment Research, 4: 1–10 (in Chinese with English abstract).Google Scholar
  9. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., 1994. Dynamics and Modeling of Ocean Waves. Cambridge University Press, London, 1–532.CrossRefGoogle Scholar
  10. Kong, D. X., Miao, C. Y., Wu, J. W., Jiang, L., and Duan, Q. Y., 2015. Bi–objective analysis of water–sediment regulation for channel scouring and delta maintenance: A study of the lower Yellow River. Global & Planetary Change, 133: 27–34.CrossRefGoogle Scholar
  11. Krone, R. B., 1962. Flume studies of the transport of sediment in estuarial processes. Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkely, California, 1–110.Google Scholar
  12. Leonard, B. P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19 (1): 59–98.CrossRefGoogle Scholar
  13. Leonard, B. P., 1991. The ultimate conservative differential scheme applied to unsteady one–dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88 (1): 17–74.CrossRefGoogle Scholar
  14. Li, G. X., 1999. Suspended sediment dispersal and interaction of river–sea off the Yellow River mouth. Marine Geology and Quaternary Geology, 19 (3): 1–10 (in Chinese with English abstract).Google Scholar
  15. Li, G. X., Liu, Y., and Yang, Z. G., 2005. Study on the Genesis of the Seabed Sedimentary Environment in the Eastern China Sea. Science Press, Beijing, 1–65.Google Scholar
  16. Li, G. X., Tang, Z. S., Yue, S. H., Zhuang, K. L., and Wei, H. L., 2001. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 21 (6–7): 607–625.CrossRefGoogle Scholar
  17. Li, G. X., Wei, H. L., Han, Y. S., and Cheng, Y. J., 1998a. Sedimentation in the Yellow River Delta, part I: Flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology, 149 (1–4): 93–111.CrossRefGoogle Scholar
  18. Li, G. X., Wei, H. L., Yue, S. H., Cheng, Y. J., and Han, Y. S., 1998b. Sedimentation in the Yellow River Delta, part II: Suspended sediment dispersion and deposition on the subaqueous delta. Marine Geology, 149 (1–4): 113–131.CrossRefGoogle Scholar
  19. Li, P., Li, G. X., Qiao, L. L., Chen, X. E., Shi, J. H., Gao, F., Wang, N., and Yue, S. H., 2014. Modelling the tidal dynamic changes induced by the bridge in Jiaozhou Bay. Continental Shelf Research, 84: 43–53.CrossRefGoogle Scholar
  20. Liu, X., Li, G. X., Ma, Y. Y., Ding, D., Dada, O. A., Xu, J. S., Qiao, L. L., Li, J. C., and Liu, S. D., 2016. Distribution and diffusion of surface suspended matter off the East China shore, 2010. Geological Journal, 51 (S1): 49–59.Google Scholar
  21. Liu, X. L., Jia, Y. G., Zheng, J. W., Wen, M. Z., and Shan, H. X., 2017. An experimental investigation of wave–induced sediment responses in a natural silty seabed: New insights into seabed stratification. Sedimentology, 64 (2): 508–529.CrossRefGoogle Scholar
  22. Lumborg, U., 2005. Modelling the deposition, erosion, and flux of cohesive sediment through Øresund. Journal of Marine System, 56: 179–193.CrossRefGoogle Scholar
  23. Martin, J. M., Zhang, J., Shi, M. C., and Zhou, Q., 1993. Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean. Journal of Sea Research, 31 (93): 243–254.CrossRefGoogle Scholar
  24. Pang, J. Z., and Si, S. H., 1979. Evolution of the Yellow River estuary I. Changes in modern time. Oceanologia et Limnologia Sinica, 10 (2): 136–141 (in Chinese with English abstract).Google Scholar
  25. Pang, J. Z., and Si, S. H., 1980. Evolution of the Yellow River estuary II. Estuarine hydrology and sedimentation patterns. Oceanologia et Limnologia Sinica, 11 (4): 295–305 (in Chinese with English abstract).Google Scholar
  26. Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division Proceedings of the ASCE, 91: 105–139.Google Scholar
  27. Qiao, L. L., Zhong, Y., Wang, N., Zhao, K., Huang, L. L., and Wang, Z., 2016. Seasonal transportation and deposition of the suspended sediments in the Bohai Sea and Yellow Sea and the related mechanisms. Ocean Dynamics, 66 (5): 751–766.CrossRefGoogle Scholar
  28. Qin, Y. S., and Li, F., 1983. Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and the Huanghai Sea. In: Proceeding International Symposium on Sedimentation on the Continental Shelf, with Special Reference to the East China Sea, 1983, Hangzhou. China Ocean Press, Beijing, 83–92 (in Chinese).Google Scholar
  29. Wang, H. J., Yang, Z. S., Li, Y. H., Guo, Z. G., Sun, X. X., and Wang, Y., 2007. Dispersion pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 27 (6): 854–871.CrossRefGoogle Scholar
  30. Wang, H. J., Yang, Z. S., Saito, Y., Liu, J. P., and Sun, X., 2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50years: Connections to impacts from ENSO events and dams. Global & Planetary Change, 50 (3–4): 212–225.CrossRefGoogle Scholar
  31. Wang, H. L., and Li, G. S., 2009. Numerical simulation on seasonal transportation of suspended sediment from Huanghe (Yellow) River to Bohai Sea. Oceanologia et Limnologia Sinica, 40 (2): 129–137 (in Chinese with English abstract).Google Scholar
  32. Wang, N., Li, G. X., Qiao, L. L., Shi, J. H., Dong, P., Xu, J. S., and Ma, Y. Y., 2017. Long–term evolution in the location, propagation, and magnitude of the tidal shear front off the Yellow River mouth. Continental Shelf Research, 137: 1–12.CrossRefGoogle Scholar
  33. Wang, N., Li, G. X., Xu, J. S., Qiao, L. L., Dada, O. A., and Zhou, C. Y., 2015. The marine dynamics and changing trend off the modern Yellow River mouth. Journal of Ocean University of China, 14 (3): 433–445.CrossRefGoogle Scholar
  34. Wang, Y., Wang, H. J., Bi, N. S., and Yang, Z. S., 2011. Numerical modeling of hyperpycnal flows in an idealized river mouth. Estuarine Coastal & Shelf Science, 93 (3): 228–238.CrossRefGoogle Scholar
  35. Wang, Z. H., 1986. Application of Tide in the Coastal Areas of China. Science Press, Beijing, 1–504 (in Chinese).Google Scholar
  36. Wright, L. D., Wiseman, W. J., Bornhold, B. D., Prior, D. B., Suhayda, J. N., Keller, G. H., Yang, Z. S., and Fan, Y., 1988. Marine dispersion and deposition of Yellow River silts by gravity–driven underflows. Nature, 332: 329–332.CrossRefGoogle Scholar
  37. Wright, L. D., Yang, Z. S., Bornhold, B. D., Keller, G. H., Prior, D. B., and Wiseman, W. J., 1986. Hyperpycnal plumes and plumes front over the Huanghe Delta front. Geo–Marine Letters, 6: 97–105.Google Scholar
  38. Wright, L. D., and Nittrouer, C. A., 1995. Dispersion of river sediments in coastal seas: Six contrasting cases. Estuaries, 18 (3): 494–508.CrossRefGoogle Scholar
  39. Wu, G. Q., Xia, D. X., and Wang, W. H., 1994. The relationships between the sediment distribution of present Yellow River’s entrance to the sea and the ocean dynamic factors. Coastal Engineering, 13 (1): 24–30 (in Chinese with English abstract).Google Scholar
  40. Young, I. R., 1999. Wind Generated Ocean Waves. Elsevier Ocean Engineering Book Series, Vol. 2, Elsevier, 1–287.Google Scholar
  41. Zeng, X. M., He, R. Y., Xue, Z., Wang, H. J., Wang, Y., Yao, Z. G., Guan, W. B., and Warrillow, J., 2015. River–derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: A preliminary modeling study. Continental Shelf Research, 111: 112–125.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nan Wang
    • 1
  • Lulu Qiao
    • 2
    • 3
    Email author
  • Guangxue Li
    • 2
    • 3
  • Yi Zhong
    • 2
    • 3
  • Dehai Song
    • 4
  • Dong Ding
    • 2
    • 3
  • Fei Gao
    • 5
  • Fengying Ji
    • 6
  1. 1.College of Oceanic and AtmosphericOcean University of ChinaQingdaoChina
  2. 2.College of Marine GeosciencesOcean University of ChinaQingdaoChina
  3. 3.Key Laboratory of Submarine Sciences & Prospecting Techniques, MOEOcean University of ChinaQingdaoChina
  4. 4.Key Laboratory of Physical Oceanography, MOEOcean University of ChinaQingdaoChina
  5. 5.Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and ResourcesQingdao Institute of Marine GeologyQingdaoChina
  6. 6.National Marine Data and Information ServiceTianjinChina

Personalised recommendations