Journal of Ocean University of China

, Volume 18, Issue 1, pp 159–164 | Cite as

Evaluation of DNA Damage in the Marine Mussel Crenomytilus grayanus as a Genotoxic Biomarker of Pollution

  • Valentina V. Slobodskova
  • Elena V. Zhuravel
  • Sergey P. Kukla
  • Victor P. Chelomin


Marine pollution affects all life processes in aquatic organisms. The genotoxic effect of pollution on the mussel Crenomytilus grayanus was assessed. Bivalves were collected from the ‘clean’ (Vostochnaya Cove) and polluted (Nakhodka Bay) areas in the Peter the Great Bay. The degree of DNA damage in C. grayanus was determined by alkaline comet assay as mean percentage of DNA in tail, and the genetic damage index was calculated. Our results indicate that almost one-third of DNA in cells of gills and digestive gland of C. grayanus inhabiting the Nakhodka Bay had destructive changes compared to the individuals of this species from the Vostochnaya Cove. This study has shown that chronic pollution of the aquatic environment causes destructive changes to DNA in gill and digestive gland cells of C. grayanus.

Key words

genotoxicity DNA comet assay Crenomytilus grayanus pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akcha, F., Spagnol, C., and Rouxel, J., 2012. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquatic Toxicology, 106–107: 104–113.CrossRefGoogle Scholar
  2. Belcheva, N. N., Istomina, A. A., Slobodskova, V. V., and Chelomin, V. P., 2013. Use of molecular biomarkers of oxidative stress for the evaluation of marine pollution. Bulletin of MRSU. Series Natural Sciences (Vestnik Moskovskogo Gosudarstvennogo Oblastnogo Universiteta. Seria Estestvennye nauki), 3: 87–92 (in Russian).Google Scholar
  3. Belcheva, N. N., Zakhartsev, M. V., Dovzhenko, N. V., Zhukovskaya, A. F., Kavun, V. Y., and Chelomin, V. P., 2011. Anthropogenic pollution stimulates oxidative stress in soft tissues of the mussel Crenomytilus grayanus (Dunker, 1853). Ocean Science Journal, 46 (2): 85–94.CrossRefGoogle Scholar
  4. Cavas, T., and Konen, S., 2008. In vivo genotoxicity testing of the amnesic shellfish poison (domonic acid) in piscine erythrocytes using the micronucleus test and the comet assay. Aquatic Toxicology, 90: 154–159.CrossRefGoogle Scholar
  5. Conca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., Koza, Z., and Wojcik, A., 2003. A cross platform public domain PC image analysis program for the comet assay. Mutation Research, 534: 15–20.CrossRefGoogle Scholar
  6. Delunaro, F. A. C., Silva, B. F., Paulino, M. G., Fernandes, M. N., and Chippari–Gornes, A. R., 2013. Genotoxic and morphological damage in Hippocampus reidi exposed to crude oil. Ecotoxicology and Environmental Safety, 87: 1–9.CrossRefGoogle Scholar
  7. Goswami, P., Thirunavukkarasu, S., Godhantaraman, N., and Munuswamy, N., 2014. Monitoring of genotoxicity in marine zooplankton induced by toxic metals in Ennore Estuary, Southeast coast of India. Marine Pollution Bulletin, 88: 70–80.CrossRefGoogle Scholar
  8. Hamoutene, D., Payne, J. F., Rahimtula, A., and Lee, K., 2002. Use of the comet assay to assess DNA damage in haemocytes and digestive gland cells of mussels and clams exposed to water contaminated with petroleum hydrocarbons. Marine Environmental Research, 54: 471–474.CrossRefGoogle Scholar
  9. Hook, S. E., and Lee, R. F., 2004. Interactive effects of UV, benzo[a]pyrene, and cadmium on DNA damage and repair in embryos of the shrimp Paleomonetes pugio. Marine Environmental Research, 58: 735–739.CrossRefGoogle Scholar
  10. Klobucar, G. I. V., Stambuk, A., Hylland, K., and Pavlica, M., 2008. Detection of DNA damage in haemocytes of Mytilus galloprovincialis in the coastal ecosystems of Kastela and Trogir Bays, Croatia. Science of the Total Environment, 405: 330–337.CrossRefGoogle Scholar
  11. Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., Koza, Z., and Wojcik, A., 2003. A cross platform public domain PC image analysis program for the comet assay. Mutation Research, 534: 15–20.CrossRefGoogle Scholar
  12. Mai, H., Cachot, J., Brune, J., Geffard, O., Belles, A., Budzinski, H., and Morin, B., 2012. Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Marine Pollution Bulletin, 64: 2663–2670.CrossRefGoogle Scholar
  13. Naumov, Y. A., 2006. Anthropogenesis and Ecological Condition of Geosystem in Marine–Coastal Zone of Peter the Great Bay, Sea of Japan. Vladivostok, Dal’nauka, 300pp.Google Scholar
  14. Raimundo, J., Costa, P. M., Vale, C., Costa, M. H., and Moura, I., 2010. DNA damage and metal accumulation in four tissues of feral Octopus vulgaris from two coastal areas in Portugal. Ecotoxicology and Environmental Safety, 73: 1543–154.CrossRefGoogle Scholar
  15. Sarkar, A., Gaitonde, D. C. S., Sarkar, A., Vashistha, D., D’Silva, C., and Dalal, S. G., 2008. Evaluation of impairment of DNA integrity in marine gastropods (Cronia contracta) as a biomarker of genotoxic contaminants in coastal water around Goa, West coast of India. Ecotoxicology and Environmental Safety, 71: 473–482.CrossRefGoogle Scholar
  16. Sarker, S., and Sarkar, A., 2015. Role of marine pollutants in impairment of DNA integrity. Journal of Clinical Toxicology, 5 (2): 1–6.Google Scholar
  17. Sarker, S., Vashistha, D., Saha Sarker, M., and Sarkar, A., 2018. DNA damage in marine rock oyster (Saccostrea Cucullata) exposed to environmentally available PAHs and heavy metals along the Arabian Sea coast. Ecotoxicology and Environmental Safety, 151: 132–143.CrossRefGoogle Scholar
  18. Sasaki, Y. F., Izumiyama, F., Nishidate, E., Ishibashi, S., Tsuda, S., Matsusaka, N., Asano, N., Saotome, K., Sofuni, T., and Hayashi, M., 1997. Detection of genotoxicity of polluted sea water using shellfish and the alkaline single–cell gel electrophoresis (SCE) assay: A preliminary study. Mutation Research, 393: 133–139.CrossRefGoogle Scholar
  19. Schroder, H. C., Di Bella, G., Janipour, N., Bonaventura, R., Russo, R., Muller, W. E. G., and Matranga, V., 2005. DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. In: Progress in Molecular and Subcellular Biology. Subseries Marine Molecular Biotechnology. Echinodermata, V. M., ed., Springer–Verlag, Berlin, Heidelberg, 111–138.CrossRefGoogle Scholar
  20. Siu, S. Y. M., Lam, P. K. S., Martin, M., Caldwell, C. W., and Richardson, B. J., 2008. The use of selected genotoxicity assays in green–lipped mussels (Perna viridis): A validation study in Hong Kong coastal water. Marine Pollution Bulletin, 57: 479–492.CrossRefGoogle Scholar
  21. Slobodskova, V. V., Kukla, S. P., and Chelomin, V. P., 2015. An analysis of the quality of the marine environment based on determination of the genotoxicity of DNA damage in the gill cells of the Yesso scallop, Mizuhopecten yessoensis (Jay, 1856). Russian Journal of Marine Biology, 41 (6): 495–498.CrossRefGoogle Scholar
  22. Slobodskova, V. V., Solodova, E. E., Slinko, E. N., and Chelomin, V. P., 2010a. Evaluation of the genotoxicity of cadmium in gill cells of the clam Corbicula japonica using the comet assay. Russian Journal of Marine Biology, 36 (4): 311–315.CrossRefGoogle Scholar
  23. Slobodskova, V. V., Solodova, E. E., and Chelomin, V. P., 2010b. DNA damage (Comet Assay) as biomarker of Cd exposure in marine seed scallops Mizuhopecten yessoensis age 1 year. Journal of Environmental Science and Engineering, 4 (10): 63–69.Google Scholar
  24. Slobodskova, V. V., Zhukovskaya, A. F., and Chelomin, V. P., 2012. DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis during anoxic stress and aerobic recovery. Ocean Science Journal, 47 (2): 95–100.CrossRefGoogle Scholar
  25. Taban, I. C., Beckmann, R. K., Torgrimsen, S., Baussant, T., and Sanni, S., 2004. Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay. Marine Environmental Research, 58: 701–705.CrossRefGoogle Scholar
  26. Thomas, R. E., Lindeberg, M., Harris, P. M., and Rice, S. D., 2007. Induction of DNA strand breaks in the mussel (Mytilus trossulus) and clam (Protothaca staminea) following chronic field exposure to polycyclic aromatic hydrocarbons from the Exxon Valdez spill. Marine Pollution Bulletin, 54: 726–732.CrossRefGoogle Scholar
  27. Vanzella, T. P., Martinez, C. B. R., and Colus, L. M. S., 2007. Genotoxic and mutagenic effects of diesel oil water soluble fraction on a neotropical fish species. Mutation Research, 631: 36–43.CrossRefGoogle Scholar
  28. VNIRO, 2003, Manual on the chemical analyze of marine and fresh waters during ecological monitoring of fishery water basins and per–spective for commercial fishery regions of the world ocean. Moscow, 202pp.Google Scholar
  29. Weber, L., Carvalho, L., Sa, N., Silva, V., Beraldini, N., Souza, V., and Conceicao, M., 2013. Genotoxic effects of the water–soluble fraction of heavy oil in the brackish/freshwater amphipod Quadrivisio aff. lutzi (Gammaridea) as assessed using the comet assay. Ecotoxicology, 22: 642–655.CrossRefGoogle Scholar
  30. Wessel, N., Rousseau, S., Caisey, X., Quiniou, F., and Akcha, F., 2007. Investigating the relationship between embryotoxic and genotoxic effects of benzo[a]pyrene, 17a–ethinylestradiol and endosulfan on Crassostrea gigas embryos. Aquatic Toxicology, 85: 133–142.CrossRefGoogle Scholar
  31. Zhuravel, E. V., Chernyaev, A. P., Sokolova, L. I., Chudovskaya, Y. M., and Proshina, M. A., 2015. Hydrocarbons and polychlorinated biphenyls in the bottom sediments from the nakhodka bay (Peter the Great Bay, Sea of Japan): Assessment of pollution level and potential toxicity. Contemporary Problems of Ecology, 8 (6): 772–779.CrossRefGoogle Scholar
  32. Zhuravel, E. V., Markina, Zh. V., Khristoforova, N. K., and Aizdaicher, N. A., 2006. Biotesting of water quality in Peter the Great Bay with the use of the microalga Dunaliella salina and embryos and larvae of the sea urchin Scaphechinus mirabilis. Russian Journal of Marine Biology, 32: 188–196.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Valentina V. Slobodskova
    • 1
  • Elena V. Zhuravel
    • 2
  • Sergey P. Kukla
    • 1
  • Victor P. Chelomin
    • 1
    • 2
  1. 1.Laboratory of Marine Ecotoxicology, V.I. Ilichev Pacific Oceanological Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.School of Natural SciencesFar Eastern Federal UniversityVladivostokRussia

Personalised recommendations