Advertisement

Journal of Ocean University of China

, Volume 16, Issue 5, pp 766–774 | Cite as

The evolution of water property in the Mackenzie Bay polynya during Antarctic winter

  • Zhixin Xu
  • Guoping Gao
  • Jianping Xu
  • Maochong Shi
Article
  • 44 Downloads

Abstract

Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers (CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya (MBP) in front of the Amery Ice Shelf (AIS). In late March the upper 100–200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about −1.90℃ while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m−2, heat flux with the values of 9.8–287.0 W m−2 loss and the sea ice growth rates of 4.3–11.7 cm d−1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter (March to October) due to the air-sea-ice interaction, with an average size of about 5.0×103 km2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.

Key words

Antarctic Mackenzie Bay polynya sea ice formation heat flux brine rejection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by the Science and Technology Basic Work of the Ministry of Science and Technology of China (No. 2012FY112300) It is our pleasure to thank Prof. Mark Hindell from the University of Tasmania, Australia, for providing the IMOS Seal-CTD data.

References

  1. Carmack, E. C., and Foster, T. D., 1975. On the flow of water out of the Weddell Sea. Deep Sea Research and Oceanographic Abstracts, 22 (11): 711–724.CrossRefGoogle Scholar
  2. Charrassin, J. B., Hindell, M., Rintoul, S. R., Roquet, F., Sokolov, S., Biuw, M., Costa, D., Boehme, L., Lovell, P., Coleman, R., Timmermann, R., Meijers, A., Meredith, M., Park, Y. H., Bailleul, F., Goebell, M., Tremblay, Y., Bost, C. A., McMahon, C. R., Field, I. C., Fedak, M. A., and Guinet, C., 2008. Southern ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proceedings of the National Academy of Sciences of the United States of America, 105 (33): 11634–11639.CrossRefGoogle Scholar
  3. Cheng, Y. Y., Shi, J. X., and Zheng, S. J., 2012. Temporal and spatial variation of the Mackenzie Bay Polynya, Antarctica and its main impact factors. Periodical of Ocean University of China, 42: 1–9 (in Chinese with English abstract).Google Scholar
  4. Costa, D. P., Klinck, J. M., Hofmann, E. E., Dinniman, M. S., and Burns, J. M., 2008. Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals. Deep Sea Research Part IITopical Studies in Oceanography, 55 (3-4): 323–337.CrossRefGoogle Scholar
  5. Fahrbach, E., Augstein, E., and Olbers, D., 1994. Impact of shelf and sea ice on water mass modifications and large-Scale oceanic circulation in the Weddell Sea. In: Antarctic Science. Hempel, G., ed., Springer, Heidelberg, Berlin, 167–187.CrossRefGoogle Scholar
  6. Fraser, A. D., Massom, R. A., Michael, K. J., Galtonfenzi, B. K., and Lieser, J. L., 2012. East Antarctic landfast sea ice distribution and variability, 2000–08. Journal of Climate, 25 (4): 1137–1156.CrossRefGoogle Scholar
  7. Gao, G. P., Yan, M. F., Xu, Z. X., and Cheng, L. Q., 2016. The evolution of upper water structure in the Prydz Bay polynya region during Antarctic winter, 2011. Chinese Journal of Polar Research, 28 (2): 219–227 (in Chinese with English abstract).Google Scholar
  8. Gordon, A. L., 1982. Weddell deep water variability. Journal of Marine Research, 40: 199–217.CrossRefGoogle Scholar
  9. Hou, J., Shi, J., Heygster, G., and Cheng, Y., 2011. Area of a polynya at Amery Ice Shelf derived from AMSR-E 89 GHz sea ice concentrations and MODIS images. Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, 124–127.Google Scholar
  10. Kitade, Y., Shimada, K., Tamura, T., Williams, G. D., Aoki, S., Fukamachi, Y., Roquet, F., Hindell, M., Ushio, S., and Ohshima, K. I., 2014. Antarctic bottom water production from the Vincennes Bay polynya, East Antarctica. Geophysical Research Letters, 41 (10): 3528–3534.CrossRefGoogle Scholar
  11. Markus, T., and Burns, B. A., 1995. A method to estimate subpixel-scale coastal polynyas with satellite passive microwave data. Journal of Geophysical Research Oceans, 100 (C3): 4473–4487.CrossRefGoogle Scholar
  12. Marsland, S. J., Bindoff, N. L., Williams, G. D., and Budd, W. F., 2004. Modeling water mass formation in the Mertz glacier polynya and Adélie Depression, East Antarctica. Journal of Geophysical Research, 109 (C11): 640–645.CrossRefGoogle Scholar
  13. Martin, S., Drucker, R. S., and Kwok, R., 2007. The areas and ice production of the western and central Ross Sea polynyas, 1992–2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002. Journal of Marine Systems, 68 (1): 201–214.CrossRefGoogle Scholar
  14. Massom, R. A., Harris, P. T., Michael, K. J., and Potter, M. J., 1998. The distribution and formative processes of latent-heat polynyas in East Antarctica. Annals of Glaciology, 27: 420–426.Google Scholar
  15. Middleton, J. H., and Humphries, S. E., 1989. Thermohaline structure and mixing in the region of Prydz Bay, Antarctica. Deep Sea Research Part A. Oceanographic Research Papers, 36 (8): 1255–1266.CrossRefGoogle Scholar
  16. Millero, F. J., 1978. Freezing point of sea water. Eighth Report of the Joint Panel of Oceanographic Tables and Standards, appendix. Unesco Technical Paper in Marine Science, 28: 29–31.Google Scholar
  17. Nihashi, S., and Ohshima, K. I., 2015. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. Journal of Climate, 28 (9): 3650–3670.CrossRefGoogle Scholar
  18. Nunes, V. R. A., and Lennon, G. W., 1996. Physical oceanography of the Prydz Bay region of Antarctic waters. Deep Sea Research Part I: Oceanographic Research Papers, 43 (5): 603–641.CrossRefGoogle Scholar
  19. Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Borreguero, H. L., Field, L., Hindell, M., Aoki, S., and Wakatsuchi, M., 2013. Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6 (3): 235–240.CrossRefGoogle Scholar
  20. Potter, M. J., 1995. An evaluation of polynyas in East Antarctica. Bachelor thesis. University of Tasmania.Google Scholar
  21. Pu, S. Z., Hu, X. M., Dong, Z. Q., Yu, F., and Chen X. R., 2002. Features of circumpolar deep water, Antarctic bottom water and their movement near the Prydz Bay. Acta Oceanologica Sinica, 24 (3): 1–8 (in Chinese with English abstract).Google Scholar
  22. Roquet, F., Charrassin, J. B., Marchand, S., Boehme, L., Fedak, M., Reverdin, G., and Guinet, C., 2011. Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers. Journal of Atmospheric & Oceanic Technology, 28 (6): 787–801.CrossRefGoogle Scholar
  23. Tamura, T., Ohshima, K. I., and Nihashi, S., 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 35 (7): 284–298.CrossRefGoogle Scholar
  24. Tamura, T., Ohshima, K. I., Fraser, A. D., and Williams, G. D., 2016. Sea ice production variability in Antarctic coastal polynyas. Journal of Geophysical Research, 121: 2967–2979.Google Scholar
  25. Tamura, T., Ohshima, K. I., Markus, T., Cavalieri, D. J., Nihashi, S., and Hirasawa, N., 2007. Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. Journal of Atmospheric & Oceanic Technology, 24 (10): 431–443.CrossRefGoogle Scholar
  26. Williams, G. D., Aoki, S., Jacobs, S. S., Rintoul, S. R., Tamura, T., and Bindoff, N. L., 2010a. Antarctic bottom water from the Adélie and George V Land coast, East Antarctica (140–149°E). Journal of Geophysical Research: Oceans, 115 (C4): C04027.CrossRefGoogle Scholar
  27. Williams, G. D., Bindoff, N. L., Marsland, S. J., and Rintoul, S. R., 2008. Formation and export of dense shelf water from the Adélie Depression, East Antarctica. Journal of Geophysical Research: Oceans, 113 (C4): C04039.CrossRefGoogle Scholar
  28. Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R., Harcourt, R., and Hindell, M., 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communincations, 7: 12577, DOI: 10.1038/ncomms12577.CrossRefGoogle Scholar
  29. Williams, G. D., Hindell, M., Houssais, M. N., and Tamura, T., 2010b. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by elephant seal foraging in the Adélie Depression, East Antarctica. Ocean Science, 7 (2): 185–202.CrossRefGoogle Scholar
  30. Xu, Z. X., Gao, G. P., Xu, J. P., and Cheng L. Q., 2018. Distribution of water masses and high density water near the Amery Ice Shelf in Antarctic winter, 2012. Chinese Journal of Polar Research (Accepted) (in Chinese with English abstract).Google Scholar
  31. Xu, Z. X., Xu, J. P., Gao, G. P., and Shi, M. C., 2016a. Study on hydrographic features and water masses in the Prydz Bay and its adjacent waters in Antarctic winter of 2011. Advances in Marine Science, 34 (2): 226–239 (in Chinese with English abstract).Google Scholar
  32. Yabuki, T., Suga, T., Hanawa, K., Matsuoka, K., Kiwada, H., and Watanabe, T., 2006. Possible source of the Antarctic bottom water in the Prydz Bay region. Journal of Oceanography, 62 (5): 649–655.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhixin Xu
    • 1
    • 2
    • 3
    • 4
  • Guoping Gao
    • 3
  • Jianping Xu
    • 1
    • 2
    • 3
    • 4
  • Maochong Shi
    • 1
  1. 1.College of Oceanic and Atmospheric SciencesOcean University of ChinaQingdaoP. R. China
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics (SOED)State Oceanic AdministrationHangzhouP. R. China
  3. 3.Shanghai Ocean UniversityCollege of Marine SciencesShanghaiP. R. China
  4. 4.The Second Institute of OceanographyState Oceanic AdministrationHangzhouP. R. China

Personalised recommendations