Skip to main content
Log in

Skeletonema cf. costatum biogenic silica production rate determinated by PDMPO method

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Diatoms are the only ecological phytoplankton that require silicic acid for growth. They are also the dominant contributor of ocean’s total primary productivity. Generation and circulation with silica walls, which the siliceous organisms form, is an important component of the marine biological pump. It is crucial to the study of the operational mechanisms of biological pump with different sea areas. Moreover, it is the key link to the study of global silicon cycle. This paper introduces the basic mechanism of the formation of diatom silica walls and a new way of researching silicic acid metabolism, namely the 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)- methoxy)phenyl)oxazole (PDMPO) dyeing method. Under a fluorescence microscope after excitation with bright green fluorescence, it can combine with silicic acid to form a complex into the Si deposition within diatom cells. The advantage of this method is that it can monitor the metabolism of silicate after adding PDMPO. For experimentation and sample collection in each of the specified time points, samples were determinated through the unutilized silicic acid, silica dissoluble intracellular and Si deposition within diatom cells, not only using hot alkaline digestions method but also PDMPO dyeing method. Results showed a good linear relationship between PDMPO fluorescent value and biogenic silica concentration. It was also indicated that PDMPO had no deleterious impact on Skeletonema cf. costatum growth for 34 h and was useful for tracking newly-deposited biogenic silica in diatoms’ frustules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amo, Y. D., and Brzezinski, M. A., 1999. The chemical form of dissolved Si taken up by marine diatoms. Journal of Phycology, 35 (6): 1162–1170.

    Article  Google Scholar 

  • Azam, F., Hemmingsen, B. B., and Volcani, B. E., 1974. Role of silicon in diatom metabolism. Archives of Microbiology, 97 (1): 103–114.

    Article  Google Scholar 

  • Azam, F., and Volcani, B. E., 1981. Germanium-Silicon Interactions in Biological Systems. Springer, New York, 43–67.

    Google Scholar 

  • Bhattacharyya, P., and Volcani, B. E., 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National Academy of Sciences, 77 (11): 6386–6390.

    Article  Google Scholar 

  • Brunner, E., Gröger, C., Lutz, K., Richthammer, P., Spinde, K., and Sumper, M., 2009. Analytical studies of silica biomineralization: Towards an understanding of silica processing by diatoms. Applied Microbiology and Biotechnology, 84 (4): 607–616.

    Article  Google Scholar 

  • Brzezinski, M. A., and Conley, D. J. 1994. Silicon deposition during the cell cycle of Thalassiosira Weissflogii (Bacillariophyceae) determeined using dual Rhodamine 123 and Propidium Iodide Staining. Journal of Phycology, 30: 45–55.

    Article  Google Scholar 

  • Carlisle, E. M., 1970. Silicon: A possible factor in bone calcification. Science, 167 (3916): 279–280.

    Article  Google Scholar 

  • DeMaster, D. J., Leynaert, A., and Queguiner, B., 1995. The silica balance in the world ocean: A reestimate. Science, 268 (5209): 375–379.

    Article  Google Scholar 

  • Desclés, J., Vartanian, M., El Harrak, A., Quinet, M., Bremond, N., Sapriel, G., Bibette, J., and Lopez, P. J., 2008. New tools for labeling silica in living diatoms. New Phytologist, 177 (3): 822–829.

    Article  Google Scholar 

  • Diwu, Z., Chen, C. S., Zhang, C., Klaubert, D. H., and Haugland, R. P., 1999. A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. Chemistry & Biology, 6 (7): 411–418.

    Article  Google Scholar 

  • Drum, R. W., and Pankratz, H. S., 1964. Post mitotic fine structure of Gomphonema parvulum. Journal of Ultrastructure Research, 10 (3): 217–223.

    Article  Google Scholar 

  • Epstein, E., 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91 (1):11–17.

    Article  Google Scholar 

  • Guo, S. J., Li, Y. Q., Zhang, C. X., Zhai, W. D., Huang, T., Wang, L. F., Ma, W., Jin, H. L., and Sun, J., 2014a. Phytoplankton community in the Bohai Sea and its relationship with environmental factors. Marine Science Bulletin, 33 (1): 95–105 (in Chinese with English abstract).

    Google Scholar 

  • Guo, S. J., Feng, Y. Y., Wang, L., Dai, M. H., Liu, Z. L., Bai, Y. and Sun, J., 2014b. Seasonal variation in the phytoplankton community of a continental-shelf sea: The East China Sea. Marine Ecology Progress Series, 516: 103–126.

    Article  Google Scholar 

  • Hildebrand, M., Kim, S., Shi, D., Scott, K., and Subramaniam, S., 2009. 3D imaging of diatoms with ion-abrasion scanning electron microscopy. Journal of Structural Biology, 166 (3): 316–328.

    Article  Google Scholar 

  • Hildebrand, M., 2008. Diatoms, biomineralization processes, and genomics. Chemical Reviews, 108 (11): 4855–4874.

    Article  Google Scholar 

  • Hildebrand, M., Volcani, B. E., Gassmann, W., and Schroeder, J. I., 1997. A gene family of silicon transporters. Nature, 385 (6618): 688.

    Article  Google Scholar 

  • Keeting, P. E., Oursler, M. J., Wiegand, K. E., Bonde, S. K., Spelsberg, T. C., and Riggs, B. L., 1992. Zeolite a increases proliferation, differentiation, and transforming growth factor ß production in normal adult human osteoblast-like cells in vitro. Journal of Bone and Mineral Research, 7 (11): 1281–1289.

    Article  Google Scholar 

  • Leblanc, K., and Hutchins, D. A., 2005. New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnology and Oceanography: Methods, 3: 462–476.

    Article  Google Scholar 

  • Lewin, J. C., 1955. Silicon metabolism in diatoms. II. Sources of silicon for growth of Navicula pelliculosa. Plant Physiology, 30 (2): 129.

    Article  Google Scholar 

  • Liang, J. R., Chen, D. D., Gao, Y. H., and Chen, J. F., 2011. A review on the process and mechanism of marine diatom silica structure formation. Acta Oceanologica Sinica, 32 (5): 1–8 (in Chinese with English abstract).

    Google Scholar 

  • Liu, X., Huang, B. Q., Huang, Q., Wang, L., Ni, X. B., Tang, Q. S., Sun, S., Wei, H., Liu, S. M., Li, C. L., and Sun, J., 2015. Seasonal phytoplankton response to physical processes in the southern Yellow Sea. Journal of Sea Research, 95: 45–55.

    Article  Google Scholar 

  • Losic, D., Mitchell, J. G., and Voelcker, N. H., 2009. Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, 21 (29): 2947–2958.

    Article  Google Scholar 

  • Ma, W., and Sun, J., 2014. Characteristics of phytoplankton community in the northern South China Sea in summer and winter. Acta Ecologica Sinica, 34 (3): 621–632 (in Chinese with English abstract).

    Google Scholar 

  • Martin-Jézéquel, V., Hildebrand, M., and Brzezinski, M. A., 2000. Silicon metabolism in diatoms: Implications for growth. Journal of Phycology, 36 (5): 821–840.

    Article  Google Scholar 

  • Nelson, D. M., Treguer, P., Leynaert, A., and Quéguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9: 359–372.

    Article  Google Scholar 

  • Reimann, B. E. F., Leivin, J. C., and Volcani, B. E., 1966. Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. Journal of Phycology, 2 (2): 74–84.

    Article  Google Scholar 

  • Sandhage, K. H., Allan, S. M., Dickerson, M. B., Gaddis, C. S., Shian, S., Weatherspoon, M. R., Cai, Y., Ahmad, G., Haluska, M. S., Snyder, R. L., Unocic, R. R., Zalar, F. M., Zhang, Y. S., Rapp, R. A., Hildebrand, M., and Palenik, B. P., 2005. Merging biological self-assembly with synthetic chemical tailoring: The potential for 3-D genetically engineered micro/nano-devices (3-D GEMS). International Journal of Applied Ceramic Technology, 2 (4): 317–326.

    Article  Google Scholar 

  • Schmid, A. M. M., Borowitzka, M. A., and Volcani, B. E., 1981. Morphogenesis and Biochemistry of Diatom Cell Walls. Springer, Vienna, 63–97.

    Google Scholar 

  • Shimizu, K., Del Amo, Y., Brzezinski, M. A., Stucky, G. D., and Morse, D. E., 2001. A novel fluorescent silica tracer for biological silicification studies. Chemistry & Biology, 8 (11): 1051–1060.

    Article  Google Scholar 

  • Sigel, A., Sigel, H., and Sigel, R. K., eds., 2008. Biomineralization: From Nature to Application. John Wiley & Sons, USA, 255–294.

    Book  Google Scholar 

  • Simpson, T. L., and Volcani. B. E., 1981. Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York, 69–94.

    Book  Google Scholar 

  • Sullivan, C. W., 1977. Diatom mineralization of silicic acid. II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology, 13 (1): 86–91.

    Google Scholar 

  • Sumper, M., and Brunner, E., 2008. Silica biomineralisation in diatoms: The model organism Thalassiosira pseudonana. ChemBioChem, 9 (8): 1187–1194.

    Article  Google Scholar 

  • Tesson, B., and Hildebrand, M., 2010. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilaments. Journal of Structural Biology, 169 (1): 62–74.

    Article  Google Scholar 

  • Werner, D., 1977. The Biology of Diatoms. University of California Press, Berkeley, 1–22.

    Google Scholar 

  • Tréguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., Leynaert, A., and Quéguiner, B., 1995. The silica balance in the world ocean: A reestimate. Science, 268: 375–379.

    Article  Google Scholar 

  • Yuan, M. L., Sun, J., and Zhai, W. D., 2014. Phytoplankton community in Bohai Sea and the North Yellow Sea in autumn 2012. Journal of Tianjin University of Science & Technology, 29 (6): 56–64 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, C. X., Chen, T., Huang, X., Guo, S. J., Zhai, W. D., and Sun, J., 2014. Phytoplankton communities in the Northern Yellow Sea in summer, 2011. Transactions of Oceanology and Limnology, 1: 81–93 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China primarily supported this study. Dr. J. Sun received grants from the National Natural Science Foundation of China (Nos. 41276124 and 41676112), Program for Changjiang Scholars and the Science Fund for University Creative Research Groups in Tianjin (No. TD12-5003). Dr. Y. Feng received grants from the National Natural Science Foundation of China (No. 41306118). Dr. G. Zhang received grants from the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), P. R. China (No. 201504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Leng, X., Feng, Y. et al. Skeletonema cf. costatum biogenic silica production rate determinated by PDMPO method. J. Ocean Univ. China 16, 333–338 (2017). https://doi.org/10.1007/s11802-017-2899-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-2899-2

Key words

Navigation