Journal of Ocean University of China

, Volume 15, Issue 2, pp 283–287 | Cite as

Assessment and comparison of in vitro immunoregulatory activity of three astaxanthin stereoisomers

  • Weihong Sun
  • Lihong Xing
  • Hong Lin
  • Kailiang Leng
  • Yuxiu Zhai
  • Xiaofang Liu
Article

Abstract

In recent years, the immune-modulatory role of all-trans astaxanthin from different pigment sources has been studied. It was reported that all-trans astaxanthin might exist as three stereoisomers, and the composition of all-trans stereoisomers in natural materials differs from that of synthetic products. However, the different biological effects of various all-trans stereoisomers still remain unclear. In the present study, we evaluated the bioactivity of three astaxanthin stereoisomers, (3S,3’S)-trans-, (3R,3’R)-trans-and meso-trans-astaxanthin, in regulating cell-mediated immune response using mice lymphocytes and peritoneal exudates cells (PECs) systems. After the treatment with three astaxanthin stereoisomers (20 μmol L−1), the lymphocyte proliferation capacity, neutral red phagocytosis of PECs and natural killer (NK) cell cytotoxic activity were comparatively assessed. The results showed that all three astaxanthin stereoisomers significantly promoted lymphocyte proliferation, phagocytic capacity of PECs, and cytotoxic activity of NK cells. Moreover, the (3S,3’S)-trans-astaxanthin exhibited a much higher response than others.

Keywords

all-trans-astaxanthin stereoisomer immunity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amar, E. C., Kiron, V., Satoh, S., and Watanabe, T., 2001. Influence of various dietary synthetic carotenoids on bio-defense mechanisms in rainbow trout, Oncorhynchus mykiss. Aquaculture Research, 32 (Suppl 1): 162–173.CrossRefGoogle Scholar
  2. Amar, E. C., Kiron, V., Satoh, S., and Watanabe, T., 2004. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish & Shellfish Immunology, 16: 527–537.CrossRefGoogle Scholar
  3. Amar, E. C., Kiron, V., Satoh, S., Okamoto, N., and Watanabe, T., 2002. Effects of dietary ß-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fisheries Science, 66: 1068–1075.CrossRefGoogle Scholar
  4. Ambati, R. R., Phang, S. M., Ravi, S., and Aswathanarayana, R. G., 2014. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications–A review. Marine Drugs, 12: 128–152.CrossRefGoogle Scholar
  5. Bar, E., Rise, M., Vishkautsan, M., and Arad, S., 1995. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. Journal of Plant Physiology, 146: 527–534.CrossRefGoogle Scholar
  6. Bjerkeng, B., Peisker, M., Schwartzenberg, K., Ytrestøyl, T., and Åsgård, T., 2007. Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquaculture, 269: 476–489.CrossRefGoogle Scholar
  7. Bjerkeng, B., Storebakken, T., and Liaaen-Jensen, S., 1992. Pigmentation of rainbow trout from start feeding to sexual maturation. Aquaculture, 108: 333–346.CrossRefGoogle Scholar
  8. Bon, J. A., Leathers, T. D., and Jayaswal, R. K., 1997. Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma. Biotechnology Letters, 19: 109–112.CrossRefGoogle Scholar
  9. Cao, Q. Z., and Lin, Z. B., 2004. Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacologica Sinica, 25: 833–838.Google Scholar
  10. Chew, B. P., Mathison, B. D., Hayek, M. G., Massimino, S., Reinhart, G. A., and Park, J. S., 2011. Dietary astaxanthin enhances immune response in dogs. Veterinary Immunology and Immunopathology, 140: 199–206.CrossRefGoogle Scholar
  11. Chew, B. P., Wong, M. W., Park, J. S., and Wong, T. S., 1999. Dietary beta-carotene and astaxanthin but not canthaxanthin stimulate splenocyte function in mice. Anticancer Research, 19: 5223–5227.Google Scholar
  12. Choubert, G., Mendes-Pinto, M. M., and Morais, R., 2006. Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture, 257: 429–436.CrossRefGoogle Scholar
  13. David, J. N., and Gordon, M. C., 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Product, 75: 311–335.CrossRefGoogle Scholar
  14. Fan, L., Vonshak, A., Gabbay, R., Hirshberg, J., Cohen, Z., and Bous-siba, S., 1995. The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine. Plant and Cell Physiology, 36: 1519–1524.Google Scholar
  15. Govindaraj, J., Emmadi, P., and Puvanakrishmam, R., 2010. In vitro studies on inhibitory effect of proanthocyanidins in modulation of neutrophils and macrophages. Indian Journal of Biochemistry & Biophysics, 47: 141–147.Google Scholar
  16. Guerra, B. A., and Otton, R., 2011. Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose. International Immunopharmacology, 11: 2220–2226.CrossRefGoogle Scholar
  17. Guerra, B. A., Bolin, A. P., Morandi, A. C., and Otton R., 2012. Glycolaldehyde impairs neutrophil biochemical parameters by an oxidative and calcium-dependent mechanism-protective role of antioxidants astaxanthin and vitamin C. Diabetes Research and Clinical Practice, 98: 108–118.CrossRefGoogle Scholar
  18. Jurisic, V., Spuzic, I., and Konjevic, G., 1999. A comparison of the NKcell cytotoxicity with effects of TNF-a against K-562 cells, determined by LDH release assay. Cancer Letters, 138: 67–72.CrossRefGoogle Scholar
  19. Jyonouchi, H., Hill, R. I., Tomita, Y., and Good, R. A., 1991. Studies of immunomodulating actions of carotenoids. I. Effects of beta-carotene and astaxanthinon murine lymphocyte functions and cell surface marker expression in in vitro culture system. Nutrition and Cancer, 16: 93–105Google Scholar
  20. Jyonouchi, H., Zhang, L., and Tomita, Y., 1993. Studies of immunomodulating actions of carotenoids. II. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activation. Nutrition and Cancer, 19: 269–280.CrossRefGoogle Scholar
  21. Jyonouchi, H., Zhang, L., Gross, M., and Tomita, Y., 1994. Immunomodulating actions of carotenoids: Enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutrition and Cancer, 21: 47–58CrossRefGoogle Scholar
  22. Kawakami, T., Tsushima, M., Katabami, Y., Mine, M., Ishida, A., and Matsuno, T., 1998. Effect of ß, ß-carotene, ß-echinenone, astaxanthin, fucoxanthin, vitamin A and vitamin E on the biological defense of the sea urchin Pseudocentrotus depressus. Journal of Experimental Marine Biology and Ecology, 226: 165–174.CrossRefGoogle Scholar
  23. Konjevic, G., Juriš ic, V., and Spuzic, I., 1997. Corrections to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. Journal of Immunological Methods, 200: 199–201.CrossRefGoogle Scholar
  24. Kurihara, H., Koda, H., Asami, S., Kiso, Y., and Tanaka, T., 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sciences, 70: 2509–2520.CrossRefGoogle Scholar
  25. Macedo, R. C., Bolin, A. P., Marin, D. P., and Otton, R., 2010. Astaxanthin addition improves human neutrophils function: in vitro study. European Journal of Nutrition, 49: 447–457.CrossRefGoogle Scholar
  26. Moretta, A., Bottino, C., Mingari, M. C., Biassoni, R., and Moretta, L., 2002. What is a natural killer cell? Nature Immunology, 3: 6–8.CrossRefGoogle Scholar
  27. Moretti, V. M., Mentasti, T., Bellagamba, F., Luzzana, U., Caprino, F., Turchini, G. M., Giani, I., and Valfrè, F., 2006. Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Additives and Contaminants, 23: 1056–1063.CrossRefGoogle Scholar
  28. Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65: 55–63.CrossRefGoogle Scholar
  29. Nakano, T., Kanmuri, T., Sato, M., and Takeuchi, M., 1999. Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout. Biochimica et Biophysica Acta, 1426: 119–125.CrossRefGoogle Scholar
  30. Otani, H., and Monnai, M., 1993. Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk casein digests. Food and Agricultural Immunology, 5: 219–229.CrossRefGoogle Scholar
  31. Park, J. S., Chyun, J. H., Kim, Y. K., Line, L. L., and Chew, B. P., 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition Metabolism and Cardiovascular Diseases, 7: 18–27.Google Scholar
  32. Park, J. S., Mathison, B. D., Hayek, M. G., Massimino, S., Reinhart, G. A., and Chew, B. P., 2011. Astaxanthin stimulates cell-mediated and humoral immune responses in cats. Veterinary Immunology and Immunopathology, 144: 455–461.CrossRefGoogle Scholar
  33. Rao, A. R., Baskaran, V., Sarada, R., and Ravishankar, G. A., 2013. In vivo bioavailability and antioxidant activity of carotenoids from micro algal biomass–A repeated dose study. Food Research International, 54: 711–717.CrossRefGoogle Scholar
  34. Rao, A. R., Sindhuja, H. N., Dharmesh, S. M., Sankar, K. U., Sarada, R., and Ravishankar, G. A., 2013. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 61: 3842–3851.CrossRefGoogle Scholar
  35. Santos, S. D., Cahú, T. B., Firmino, G. O., de Castro, C. C., Carvalho, L. B. J., Bezerra, R. S., and Filho, J. L., 2012. Shrimp waste extract and astaxanthin: Rat alveolar macrophage, oxidative stress and inflammation. Journal of Food Science, 77: 141–146.CrossRefGoogle Scholar
  36. Schroeder, W. A., and Johnson, E. A., 1993. Antioxidant role of carotenoids in Phaffia rhodozyma. Microbiology, 139: 907–912.Google Scholar
  37. Storebakken, T., Foss, P., Austreng, E., and Liaaen-Jensen, S., 1985. Carotenoids in diets for salmonids: II. Epimerization studies with astaxanthin in Atlantic salmon. Aquaculture, 44: 259–269.Google Scholar
  38. Sun, W. H., Lin, H., Zhai, Y. X., Leng, K. L., and Xing, L. H., 2014. Separation, purification and identification of (3R,3’R)-trans-astaxanthin from Phaffia rhodozyma. Food Science, 35(11): 79–82 (in Chinese with English abstract).Google Scholar
  39. Takimoto, T., Takahashi, K., and Akiba, Y., 2007. Effect of dietary supplementation of astaxanthin by Phaffia rhodozyma on lipid peroxidation, drug metabolism and some immunological variables in male broiler chicks fed on diets with or without oxidised fat. British Poultry Science, 48: 90–97.CrossRefGoogle Scholar
  40. Thompson, I., Choubert, G., Houlihan, D. F., and Secombes, C. J., 1995. The effect of dietary vitamin A and astaxanthin on the immunocompetence of rainbow trout. Aquaculture, 133: 91–102.CrossRefGoogle Scholar
  41. Turujman, S. A., Wamer, W. G., Wei, R. R., and Albert, R. H., 1997. Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. Journal of AOAC International, 80: 622–632.Google Scholar
  42. Wang, C. L., Armstrong, D. W., and Chang, C. D., 2008. Rapid baseline separation of enantiomers and a mesoform of alltrans-astaxanthin, 13-cis-astaxanthin, adonirubin, and adonixanthin in standards and commercial supplements. Journal of Chromatography A, 1194: 172–177.CrossRefGoogle Scholar
  43. Yaqoob, P., Knapper, J. A., Webb, D. H., Williams, C. M., Newsholme, E. A., and Calder, P. C., 1998. Effect of olive oil on immune function in middle-aged men. American Journal of Clinical Nutrition, 67: 129–135.Google Scholar
  44. Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A. J., Tomiyama, Y., and Matsuzawa, Y., 2000. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 96: 1723–1732.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Weihong Sun
    • 1
    • 2
  • Lihong Xing
    • 1
  • Hong Lin
    • 2
  • Kailiang Leng
    • 1
  • Yuxiu Zhai
    • 1
  • Xiaofang Liu
    • 1
  1. 1.Yellow Sea Fishery Research InstituteChinese Academy of Fishery SciencesQingdaoP. R. China
  2. 2.College of Food Science and EngineeringOcean University of ChinaQingdaoP. R. China

Personalised recommendations