Advertisement

Journal of Ocean University of China

, Volume 14, Issue 6, pp 989–993 | Cite as

An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

  • Yuejun Xue
  • Tiantian Ge
  • Xuchen Wang
Article

Abstract

Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

Key words

radiocarbon dissolved organic carbon UV-oxidation natural waters AMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A., 2013. The changing carbon cycle of the coastal ocean. Nature, 504: 61–70.CrossRefGoogle Scholar
  2. Bauer, J. E., Williams, P. M., and Druffel, E. R. M., 1992. 14C activity of dissolved Organic carbon fractions in the N. central Pacific and Sargasso Sea. Nature, 357: 667–670.CrossRefGoogle Scholar
  3. Beaupre, S. R., Druffel, E. R. M., and Griffin, S., 2007. A lowblank phytochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Limnology and Oceanography: Methods, 5: 174–184.CrossRefGoogle Scholar
  4. Becker, J. W., Berube, P. M., Follett, C. L., Waterbury, J. B., Chrisholm, S. W., DeLong E. F., and Repeta, D. J., 2014. Closely related phytoplankton species produce similar suites of dissolved organic matter. Frontiers in Microbiology, DOI: 10.3389/fmicb.2014.00111.Google Scholar
  5. Druffel, E. R. M., and Bauer, J. E., 2000. Radio carbon distributions in Southern Ocean dissolved and particulate organic matter. Geophysical Research Letters, 27: 1495–1498.CrossRefGoogle Scholar
  6. Druffel, E. R. M., Williams, P. M., Bauer, J. E., and Ertel, J. R., 1992. Cycling of dissolved and particulate organic matter in the open ocean. Journal Geophysical Research, 97: 15639–15659.CrossRefGoogle Scholar
  7. Follett, C. L., Repeta, D. J., Rothman, D. H., Xu, L., and Santinelli, C., 2014. Hidden cycle of dissolved organic carbon in the deep ocean. PNAS, 111: 16706–16711.CrossRefGoogle Scholar
  8. Hansell, A. A., Carlson, C. A., Repeta, D., and Schlitzer, R., 2009. Dissolved organic matter in the ocean: New insights stimulated by a controversy. Oceanography Magazine, 22: 202–211.CrossRefGoogle Scholar
  9. Hansell, D. A., and Carlson, C. A., 2001. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: Control by convective overturn. Deep Sea Research Part II: Topical Studies in Oceanography, 48: 1649–1667, DOI: 10.1016/S0967-0645(00)00153-3.CrossRefGoogle Scholar
  10. Hansell, D. A., and Carlson, C. A., 2002. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, Beijing, 774pp.Google Scholar
  11. Hedges, J. I., 1992. Global biogeochemical cycles: Progress and problems. Marine Chemistry, 39: 67–93.CrossRefGoogle Scholar
  12. Jiao, N. Z., and Azam, F., 2011. Microbial carbon pump and its significance for carbon sequestration in the ocean. In: Microbial Carbon Pump in the Ocean. Jiao, N., et al., eds., Science/AAAs, Washington D. C., 43–45, DOI: 10.1126/science.opms.sd 0001.CrossRefGoogle Scholar
  13. Jiao, N. Z., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T. W., Chen, F., and Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Review Microbiology, 8: 593–599.CrossRefGoogle Scholar
  14. Middelbore, M., and Lundsgaard, C., 2003. Microbial activity in the Greeland Sea: Role of DOC lability, mineral nutrients and temperature. Aquatic Microbial Ecology, 32: 151–163.CrossRefGoogle Scholar
  15. Nelson, C. E., and Carlson, C. A., 2012. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environmental Microbiology, DOI: 101111/j.1462-2920.2012.02738.x.Google Scholar
  16. Raymond, P. A., and Bauer, J. E., 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Organic Geochemistry, 32: 469–485, DOI: 10.1016/S0146-6380(00) 00190-X.CrossRefGoogle Scholar
  17. Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Dow, R., and Fitzwater, S. E., 1993. Re-evaluation of high-temperature combustion and chemical oxidation measurements of dissolved organic in seawater. Limnology and Oceanography, 38: 1774–1782.CrossRefGoogle Scholar
  18. Wang, X. C., and Ge, T. T., Xue, Y. J., and Luo, C. L., 2015. Carbon isotopic (14C and 13C) characterization of fossil–fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China. Journal of Atmospheric Chemistry, DOI: 10.1007/s10874-015-9323-3.Google Scholar
  19. Wang, X. C., Ma, H. Q., Li, R. H., Song, Z. S., and Wu, J. P., 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River. Global Biogeochemical Cycle, 26, DOI: 10.1029/2011GB004130.Google Scholar
  20. Williams, P. M., and Druffel, E. R. M., 1987. Radiocarbon in dissolved organic carbon in the central North Pacific Ocean. Nature, 330: 246–248.CrossRefGoogle Scholar
  21. Williams, P. M., Robertson, K. J., Soutar, A., Griffin, S. M., and Druffel, E. R. M., 1992. Isotopic signatures (14C, 13C, 15N) as tracers of sources and cycling of soluble and particulate organic matter in the Santa Monica Basin, California. Progress in Oceanography, 30: 253–290, DOI: 10.1016/0079-6611(92)90015-R.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of Education, College of Chemistry and Chemical Engineering, Ocean University of ChinaQingdaoP. R. China
  2. 2.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoP. R. China

Personalised recommendations