Journal of Ocean University of China

, Volume 13, Issue 4, pp 677–682 | Cite as

Early development of Silvetia babingtonii (Fucales, Phaeophyceae)

  • Gaoge WangEmail author
  • Xiaojiao Wei
  • Limei Shuai
  • Bojun Lu
  • Shasha Wang
  • Dongdong Kang


Silvetia babingtonii is a potentially economic brown alga for sources of food and high-value added utilization. So far, sporeling nursery and field cultivation has not been successful. The lack of knowledge on development and life cycle of this alga hinder the development of techniques for the sporeings and cultivation. In this study, internal structure of oogonium and antherium of S. babingtonii was observed with hematoxylin and eosin staining and through microscope. Meanwhile, early development from zygotes to juvenile sporelings was studied at 20°C under 60–100 μmol photons m−2s−1. Zygotes germinated and divided into thallus and rhizoid cells. The larger thallus cells further divided and developed into juvenile sporelings; while the smaller rhizoid cells divided and elongated into rhizoid hairs. These findings documented the life cycle of S. babingtonii and provided fundamental knowledge for sporeling nursery in the near future.

Key words

Silvetia babingtonii conceptacles early development life cycle receptacles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anastyuk, S. D., Shevchenko, N. M., Dmitrenok, P. S., and Zvyagintseva, T. N., 2012. Structural similarities of fucoidans from brown algae Silvetia babingtonii and Fucus evanescens, determined by tandem MALDI-TOF mass spectrometry. Carbohydrate Research, 358(1): 78–81.CrossRefGoogle Scholar
  2. Bisgrove, S. R., 2007. Cytoskeleton and early development in fucoid algae. Journal of Integrative Plant Biology, 49(8): 1192–1198.CrossRefGoogle Scholar
  3. Bisgrove, S. R., and Kropf, D. L., 1998. Alignment of centrosomal and growth axes is a late event during polarization of Pelvetia compressa zygotes. Developmental Biology, 194(2): 246–256.CrossRefGoogle Scholar
  4. Bogaert, K. A., Arun, A., Coelho, S. M., and Clerck, O. D., 2013. Brown algae as a model for plant organogenesis. Plant organogenesis: Methods and protocols. Methods in Molecular Biology, 959: 97–123.CrossRefGoogle Scholar
  5. Cho, T. O., Motomura, T., and Boo, S. M., 2001. Morphological review of Pelvetia and Silvetia (Fucaceae, Phaeophyta) with an emphasis on phylogenetic relationships. Journal of Plant Biology, 44(1): 41–52.CrossRefGoogle Scholar
  6. Hable, W. E., and Hart, P. E., 2010. Signaling mechanisms in the establishment of plant and fucoid algal polarity. Molecular Reproduction and Development, 77: 751–758.CrossRefGoogle Scholar
  7. Hable, W. E., and Kropf, D. L., 1998. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Development Biology, 198(1): 45–56.Google Scholar
  8. Huang, L. J., Cai, H. B., Zhang, H. J., and Xu, X. Y., 2008. Development and utilization of seaweed natural resource-studies on seedling-rearing of Pelvetia siliquosa. Marine Fisheries Research, 29(1): 70–75 (in Chinese with English abstract).Google Scholar
  9. Khotimchenko, S. V., and Titlyanova, T. V., 1996. Distribution of an amino acid-containing phospholipid in brown algae. Phytochemistry, 41(6): 1535–1537.CrossRefGoogle Scholar
  10. Kozhenkova, S. I., 2009. Retrospective analysis of the marine flora of Vostok Bay, Sea of Japan. Russian Journal of Marine Biology, 35(4): 263–278.CrossRefGoogle Scholar
  11. Kropf, D. L., 1992. Establishment and expression of cellular polarity in fucoid zygotes. Microbilogy and Molecular Biology Reviews, 56(2): 316–339.Google Scholar
  12. Kropf, D. L., Bisgrove, S. R., and Hable, W. E., 1998. Cytoskeletal control of polar growth in plant cells. Current Opinion in Cell Biology, 10(1): 117–122.CrossRefGoogle Scholar
  13. Kropf, D. L., Bisgrove, S. R., and Hable, W. E., 1999. Establishing a growth axis in fucoid algae. Trend in Plant Science, 4(12): 490–494.CrossRefGoogle Scholar
  14. Ladah, L. B., Feddersen, F., Pearson, G. A., and Serrão, E. A., 2008. Egg release and settlement patterns of dioecious and hermaphroditic fucoid algae during the tidal cycle. Marine Biology, 155(6): 583–591.CrossRefGoogle Scholar
  15. Lee, Y., and Kang, S., 2001. A Catalogue of the Seaweeds in Korea. Publishing Department of Cheju National University, Cheju, 662pp.Google Scholar
  16. Li, M. Z., Ding, G., and Zhan, D. M., 2007. The preliminary experiment of reproduction and sporeling culture of Pelvetia siliquosa. Chinese Journal of Oceanology and Limnology phycology Branch of 7th Members of Congress and 14th Academic Thesis Abstracts. China Academic Journal Electronic Publishing House, Beijing, 284pp (in Chinese).Google Scholar
  17. Liu, W., Li, M. Z., Zhan, D. M., Ding, G., and Wu, H. Y., 2011. Nucleotide analysis and molecular phylogenetic affinity of 18S rDNA of Silvetia siliquosa. Journal of Yantai University (Natural Science and Engineering Edition), 24(1): 48–53.Google Scholar
  18. Nagasato, C., Kajimura, N., Terauchi, M., Mineyuki, Y., and Motomura, T., 2014. Electron tomographic analysis of cytokinesis in the brown alga Silvetia babingtonii (Fucales, Phaeophyceae). Protoplasma, DOI: 10.1007/S00709-014-0635-y.Google Scholar
  19. Nagasato, C., Inoue, A., Mizuno, M., Kanazawa, K., Ojima, T., Okuda, K., and Motomura, T., 2010. Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaophyceae). Planta, 232(2): 287–298.CrossRefGoogle Scholar
  20. Nagasato, C., Motomura, T., and Ichimura, T., 2001. Degeneration and extrusion of nuclei during oogenesis in Silvetia babingtonii, Cystoseira hakodatensis and Sargassum confusum (Fucales, Phaeophyceae). Phycologia, 40(5): 411–420.CrossRefGoogle Scholar
  21. Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T., and Noda, T., 2006. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: effects of spatial scales and geographic distance. Ecological Research, 21(3): 425–435.CrossRefGoogle Scholar
  22. Nara, T., Kamei, Y., Tsubouchi, A., Annoura, T., Hirota, K., Lizumi, K., Dohmoto, Y., Ono, T., and Aoki, T., 2005. Inhibitory action of marine algae extracts on the Trypanosoma cruzi dihydroorotate dehydrogenase activity and on the protozoan growth in mammalian cells. Parasitology International, 54(1): 59–64.CrossRefGoogle Scholar
  23. Ohta, T., Sasaki, S., Oohori, T., Yoshikawa, S., and Kurihara, H., 2002. α-glucosidase inhibitory activity of a 70% methanol extract from Ezoishige (Pelvetia babingtonii de Toni) and its effect on the elevation of blood glucose level in rats. Bioscience Biotechnology and Biochemistry, 66(7): 1552–1554.CrossRefGoogle Scholar
  24. Peters, A., F., Scornet, D., Ratin, M., Charrier, B., Monnier, A., Merrien, Y., Corre, E., Coelho, S. M., and Cock, J. M., 2008. Life-cycle-generation specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. Development, 135: 1503–1512.CrossRefGoogle Scholar
  25. Peters, N. T., and Kropf, D. L., 2010. Asymmetric microtubule arrays organize the endoplasmic reticulum during polarity establishment in the brown alga Silvetia compressa. Cytoskeleton, 67(2): 102–111.Google Scholar
  26. Peters, N. T., Logan, K. O., Miller, A. C., and Kropf, D. L., 2007. Phospholipase D signaling regulates microtubule organization in the fucoid alga Silvetia compressa. Plant and Cell Physiology, 48(12): 1764–1774.CrossRefGoogle Scholar
  27. Pu, R., Wozniak, M., and Robinson, K. R., 2000. Cortical actin filaments form rapidly during photopolarization and are required for the development of calcium gradients in Pelvetia compressa zygotes. Development Biology, 222(2): 440–449.CrossRefGoogle Scholar
  28. Rui, J. S., Du, Y. Q., Che, H. M., and Li, C. L., 1980. Tissue Section Technology. People Education Press, Shanghai, 1–108.Google Scholar
  29. Serrão, E. A., Alice, L. A., and Brawley, S. H., 1999. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. Journal of Phycology, 35(2): 382–394.CrossRefGoogle Scholar
  30. Skriptsova, A. V., Shevchenko, N. M., Tarbeeva, D. V., and Zyagintseva, T. N., 2012. Comparative study of polysaccharides from reproductive and sterile tissues of five brown seaweeds. Marine Biotechnology, 14(3): 304–311.CrossRefGoogle Scholar
  31. Spavieri, J., Allmendinger, A., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Guiry, M. D., Blunden, G., and Tasdemir, D., 2010. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (Phaeophyceae) from British and Irish waters. Phytotherapy Research, 24(11): 1724–1729.CrossRefGoogle Scholar
  32. Sun, H., Basu, S., Brady, S., Luciano, R. L., and Muday, G. K., 2004. Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. Plant Physiology, 135: 266–278.CrossRefGoogle Scholar
  33. Terasaki, M., Hirose, A., Narayan, B., Baba, Y., Kawagoe, C., Yasui, H., Saga, N., Hosokawa, M., and Miyashita, K., 2009. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. Journal of Phycology, 45: 974–980.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gaoge Wang
    • 1
    Email author
  • Xiaojiao Wei
    • 1
  • Limei Shuai
    • 1
  • Bojun Lu
    • 1
  • Shasha Wang
    • 2
  • Dongdong Kang
    • 1
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoP. R. China
  2. 2.Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)KielGermany

Personalised recommendations