Journal of Ocean University of China

, Volume 13, Issue 2, pp 278–282 | Cite as

Trophic ecology of sharks in the mid-east Pacific ocean inferred from stable isotopes

  • Yunkai Li
  • Yi Gong
  • Xinjun Chen
  • Xiaojie Dai
  • Jiangfeng ZhuEmail author


As apex predators, sharks are of ecological and conservation importance in marine ecosystems. In this study, trophic positions of sharks were estimated using stable isotope ratios of carbon and nitrogen for five representative species caught by the Chinese longline fleet in the mid-east Pacific, i.e., the blue shark (Prionace glauca), the bigeye thresher shark (Alopias superciliosus), the silky shark (Carcharhinus falciformis), the scalloped hammerhead (Sphyrna lewini), and the oceanic whitetip shark (Carcharhinus longimanus). Of these species, oceanic whitetip shark has the lowest trophic level and mean δ15N value (3.9 and 14.93‰ ± 0.84‰), whereas bigeye thresher shark has the highest level/values (4.5 and 17.02‰ ± 1.21‰, respectively). The bigeye thresher shark has significantly higher δ15N value than other shark species, indicating its higher trophic position. The blue shark and oceanic whitetip shark has significantly higher δ13C values than bigeye thresher shark, silky shark and scalloped hammerhead, possibly due to different diets and/or living habitats. The stable isotope data and stomach content data are highly consistent, suggesting that stable isotope analysis supplements traditional feeding ecology study of sharks, and thus contributes to understanding their trophic linkage.

Key words

trophic level stable isotope analysis mid-east Pacific shark 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum, J. K., and Worm, B., 2009. Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology, 78: 699–714.CrossRefGoogle Scholar
  2. Bonfil, R., Meÿer, M., Sholl, M. C., Johnson, R., O’Brien, S., Oosthhuzien, H., Swanson, S., Kotze, D., and Paterson, M., 2005. Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science, 310: 100–103.CrossRefGoogle Scholar
  3. Borrell, A., Cardona, L., Kumarran, R. P., and Aguilar, A., 2011. Trophic ecology of elasmobranchs caught off Gujarat, India, as inferred from stable isotopes. ICES Journal of Marine Science, 63: 547–554.CrossRefGoogle Scholar
  4. Bowman, R. E., Stillwell, C. E., Michaels, W. L., and Grosslein, M. D., 2000. Food of northwest Atlantic fishes and two common species of squid. NOAA Technical Memorandum NMFS-NE-155, 149pp.Google Scholar
  5. Cabana, G., and Rasmussen, J. B., 1994. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372: 255–257.CrossRefGoogle Scholar
  6. Cherel, Y., Hobson, K. A., and Weimerskirch, H., 2000. Using stable-isotope analysis of feathers to distinguish molting and breeding origins of seabirds. Oecologia, 122: 155–162.CrossRefGoogle Scholar
  7. Cortés, E., 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56: 707–717.CrossRefGoogle Scholar
  8. Estrada, J. A., Rice, A. N., Lutcavage, M. E., and Skomal, G. B., 2003. Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. Journal of the Marine Biological Association of the United Kingdom, 83: 1347–1350.CrossRefGoogle Scholar
  9. France, R. L., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series, 84: 9–18.Google Scholar
  10. Fry, B., 2007. Stable Isotope Ecology. Springer, 320pp.Google Scholar
  11. Guzzo, M. M., Haffner, G. D., Sorge, S., Rush, S. A., and Fisk, A. T., 2011. Spatial and temporal variabilities of δ15N and δ13C and δ15N within lower trophic levels of a large lake: implications for estimating trophic relationships of consumers. Hydrobiologia, 675: 41–53.CrossRefGoogle Scholar
  12. Hobson, K. A., 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 120: 314–326.CrossRefGoogle Scholar
  13. Hobson, K. A., Piatt, J. F., and Pitocchelli, J., 1994. Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology, 63: 786–798.CrossRefGoogle Scholar
  14. Hussey, N. E., Brush, J., McCarthy, I. D., and Fish, A. T., 2010. δ15N and δ13C diet-tissue discrimination factors for large sharks under semi-controlled conditions. Comparative Biochemistry and Physiology, Part A, 155: 445–453.CrossRefGoogle Scholar
  15. Hussey, N. E., Dudley, S. F. J., McCarthy, L. D., Cliff, G., and Fish, A. T., 2011. Stable isotope profiles of large marine predators: viable indicators of trophic position, diet, and movement in sharks?. Canadian Journal of Fish and Aquatic Science, 68: 2029–2045.CrossRefGoogle Scholar
  16. Hussey, N. E., MacHeil, M. A., McMeans, B. C., Kinney, M. J., Chapman, D. D., and Fish, A. T., 2012. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. Journal of Fish Biology, 80: 1449–1484.CrossRefGoogle Scholar
  17. Kim, S. L., and Koch, P. L., 2011. Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environmental Biology of Fish, DOI: 10.1007/s10641-011-9860-9.Google Scholar
  18. Layman, C., Arrington, D. A., Montaña, C. G., and Post, D. M., 2007. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology, 88: 42–48.CrossRefGoogle Scholar
  19. Link, J., 2002. Does food web theory work for marine ecosystems? Marine Ecology Progress Series, 230: 1–9.CrossRefGoogle Scholar
  20. MacNeil, M. A., Skmal, G. B., and Fish, A. T., 2005. Stable isotopes from multiple tissues reveal diet switching in sharks. Marine Ecology Progress Series, 203: 199–206.CrossRefGoogle Scholar
  21. Minagawa, M., and Wada, E., 1984. Step-wise enrichment of 15N along food chains further evidence and the relation between 15N and animal age. Geochim Cosmochim, 48: 1135–1140.CrossRefGoogle Scholar
  22. Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., and Peterson, C. H., 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315: 1846–1850.CrossRefGoogle Scholar
  23. Peterson, B. J., and Fry, B., 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18: 293–320.CrossRefGoogle Scholar
  24. Popp, B. N., Graham, B. S., Olson, R. J., Hannides, C. C. S., Lott, M. J., Lopez-Ibarra, G. A., Galvan-Magana, F., and Fry, B., 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of protenaceous amino acids. In: Stable Isotopes as Indicators of Ecological Change. Dawson, T., and Siegwolf, R., eds., Elsevier Academic Press, Terrestrial Ecology Series, 173–190.CrossRefGoogle Scholar
  25. Post, D. M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83: 703–718.CrossRefGoogle Scholar
  26. Post, D. M., Laymen, C. A., Albrey Arrington, D., Takimoto, G., Quattrochi, J., and Montaña, C. G., 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152: 179–189.CrossRefGoogle Scholar
  27. Rau, G. H., Mearns, A. J., Young, D. R., Olson, R. J., Shafer, H. A., and Kaplan, I. R., 1983. Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology, 64: 1314–1318.CrossRefGoogle Scholar
  28. Reum, J. C. P., 2011. Lipid correction model of carbon stable isotopes for a cosmopolitan predator, spiny dogfish Squalus acanthias. Journal of Fish Biology, 79: 2060–2066.CrossRefGoogle Scholar
  29. Wolf, N., Carleton, S. A., and Martínez del Rio, C., 2009. Ten years of experimental animal isotopic ecology. Functional Ecology, 23: 17–26.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yunkai Li
    • 1
    • 2
  • Yi Gong
    • 1
    • 2
  • Xinjun Chen
    • 1
    • 2
  • Xiaojie Dai
    • 1
    • 2
  • Jiangfeng Zhu
    • 1
    • 2
    Email author
  1. 1.College of Marine ScienceShanghai Ocean UniversityShanghaiP. R. China
  2. 2.Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of EducationShanghai Ocean UniversityShanghaiP. R. China

Personalised recommendations