Advertisement

Journal of Ocean University of China

, Volume 12, Issue 2, pp 222–229 | Cite as

Response of mode water and Subtropical Countercurrent to greenhouse gas and aerosol forcing in the North Pacific

  • Liyi Wang
  • Qinyu LiuEmail author
  • Lixiao Xu
  • Shang-Ping Xie
Article

Abstract

The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950–2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40°N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.

Key words

North Pacific Subtropical Countercurrent mode water greenhouse gas aerosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. Journal of Physical Oceanogra phy, 32: 2299–2311.CrossRefGoogle Scholar
  2. Bao, Z., Wen, Z., and Wu, R. G., 2009. Variability of aerosol optical depth over east Asia and its possible impacts. Journal of Geophysical Research, 114, D05203, DOI: 10.1029/2008 JD010603.CrossRefGoogle Scholar
  3. Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J. C., Ginoux, P., Lin, S. J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H. C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F., 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24: 3484–3519.CrossRefGoogle Scholar
  4. Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. J., Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N., 2011. The GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. Journal of Climate, 24: 3520–3544, DOI: 10.1175/2011JCLI3964.1.CrossRefGoogle Scholar
  5. Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis. Journal of Geophysical Research-Oceans, 111, C09033, DOI: 10.1029/2006JC003479.CrossRefGoogle Scholar
  6. Kobashi, F., Xie, S. P., Iwasaka, N., and Sakamoto, T. T., 2008. Deep atmospheric response to the North Pacific oceanic subtropical front in spring. Journal of Climate, 21: 5960–5975.CrossRefGoogle Scholar
  7. Kubokawa, A., 1997. A two-level model of subtropical gyre and subtropical countercurrent. Journal of Oceanography, 53: 231–244.Google Scholar
  8. Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent. Journal of Physical Oceanography, 29: 1314–1333.CrossRefGoogle Scholar
  9. Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM. Journal of Physical Oceanography, 29: 1303–1313.CrossRefGoogle Scholar
  10. Lee, H. C., 2009. Impact of atmospheric CO2 doubling on the North Pacific Subtropical Mode Water. Geophysical Research Letters, 36, L06602, DOI: 10.1029/2008GL037075.CrossRefGoogle Scholar
  11. Luo, Y., Liu, Q., and Rothstein, L. M., 2009. Simulated response of North Pacific Mode Waters to global warming. Geophysical Research Letters, 36, L23609, DOI: 10.1029/ 2009GL040906.CrossRefGoogle Scholar
  12. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z. C., 2007. Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S. et al., eds., Cambridge University Press, 747–845.Google Scholar
  13. Nakamura, H., 1996. A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. Journal of Oceanography, 52: 171–188.CrossRefGoogle Scholar
  14. Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G., 2001. Aerosols, their direct and indirect effects. Intergovernmental Panel on Climate Change, Report to IPCC from the Scientific Assessment Working Group (WGI), Cambridge University Press, 289–348.Google Scholar
  15. Qiu, B., and Huang, R. X., 1995. Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. Journal of Physical Oceanography, 25: 2374–2390.CrossRefGoogle Scholar
  16. Suga, T., Hanawa, K., and Toba, Y., 1989. Subtropical mode water in the 137°E section. Journal of Physical Oceanography, 19: 1605–1618.CrossRefGoogle Scholar
  17. Suga, T., Takei, Y., and Hanawa, K., 1997. Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. Journal of Physical Oceanography, 27: 140–152.CrossRefGoogle Scholar
  18. Suzuki, T., and Ishii, M., 2011. Long term regional sea level changes due to variations in water mass density during the period 1981-2007. Geophysical Research Letters, 38, L21604, DOI: 10.1029/2011GL049326.Google Scholar
  19. Takeuchi, K., 1984. Numerical study of the subtropical front and the subtropical countercurrent. Journal of Oceanographical Society of Japan, 40: 371–381.CrossRefGoogle Scholar
  20. Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design. Bulletin of American Meteorological Society, 93(4): 485–498, DOI: 10.1175/ BAMS-D-11-00094.1.CrossRefGoogle Scholar
  21. Uda, M., and Hasunuma, K., 1969. The eastward subtropical countercurrent in the western North Pacific Ocean. Bulletin of American Meteorological Society, 25: 201–210.Google Scholar
  22. White, W. B., Hasunuma, K., and Solomon, H., 1978. Large-scale seasonal and secular variability of the subtropical front in the western North Pacific from 1954 to 1974. Journal of Geophysical Research, 83: 4531–4544.CrossRefGoogle Scholar
  23. Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23: 966–986.CrossRefGoogle Scholar
  24. Xie, S. P., Kunitani, T., Kubokawa, A., Nonaka, M., and Hosoda, S., 2000. Interdecadal thermocline variability in the North Pacific for 1958-1997: A GCM simulation. Journal of Physical Oceanography, 30: 2798–2813.CrossRefGoogle Scholar
  25. Xie, S. P., Xu, L., Liu, Q., and Kobashi, F., 2011. Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. Journal of Climate, 24: 1212–1225.CrossRefGoogle Scholar
  26. Xu, L. X., Xie, S. P., and Liu, Q., 2012a. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. Journal of Geophysical Research — Oceans, 117, C12009, DOI: 10.1029/2012 JC008377CrossRefGoogle Scholar
  27. Xu, L. X., Xie, S. P., and Liu, Q. Y., 2013. Fast and slow response of the North Pacific Mode Water and subtropical countercurrent to global warming. Journal of Ocean University of China, 12(2), DOI: 10.1007/s11802-013-2189-6.Google Scholar
  28. Xu, L. X., Xie, S. P., Liu, Q., and Kobashi, F., 2012b. Response of the North Pacific subtropical countercurrent and its variability to global warming. Journal of Oceanography, 68: 127–137, DOI: 10.1007/s10872-011-0031-6.CrossRefGoogle Scholar
  29. Yamanaka, G., Ishizaki, H., Hirabara, M., and Ishikawa, I., 2008. Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model. Journal of Geophysical Research, 113, C12027, DOI: 10.1029/2008JC005002.CrossRefGoogle Scholar
  30. Yoshida, K., and Kidokoro, T., 1967. A subtropical countercurrent in the North Pacific-An eastward flow near the Subtropical Convergence. Journal of Oceanographical Society of Japan, 23: 88–91.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liyi Wang
    • 1
  • Qinyu Liu
    • 1
    Email author
  • Lixiao Xu
    • 1
  • Shang-Ping Xie
    • 1
    • 2
  1. 1.Physical Oceanography Laboratory and Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of ShandongOcean University of ChinaQingdaoP. R. China
  2. 2.Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations