Journal of Ocean University of China

, Volume 12, Issue 2, pp 245–252 | Cite as

The role of barrier layer in southeastern Arabian Sea during the development of positive Indian Ocean Dipole events

Article

Abstract

Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E–75°E, 0°–10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.

Key words

sea surface temperature (SST) mixed layer barrier layer Indian Ocean Dipole (IOD) persistence precipitation southeastern Arabian Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P., 2003. The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4: 1147–1167.CrossRefGoogle Scholar
  2. Annamalai, H., Murtugudde, R., Potemra, J., Xie, S., Liu, P., and Wang, B., 2003. Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Research II, 50: 2305–2330.CrossRefGoogle Scholar
  3. Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97: 163–172.CrossRefGoogle Scholar
  4. Carton, J. A., and Giese, B. S., 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Monthly Weather Review, 136: 2999–3017.CrossRefGoogle Scholar
  5. Chen, M., Xie, P., Janowiak, J. E., Arkin, P. A., and Smith, T. M., 2003. Reconstruction of the oceanic precipitation from 1948 to the present. The AMS 14th Symposium on Global Changes and Climate Variations. American Meteorological Society, Long Beach, CA.Google Scholar
  6. Chowdary, J. S., Gnanaseelan, C., and Xie, S.-P., 2009. Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean. Geophysical Research Letters, 36, L04607, DOI: 10.1029/2008GL036642.CrossRefGoogle Scholar
  7. Chu, P. C., Liu, Q., Jia, Y., and Fan, C., 2002. Evidence of a Barrier Layer in the Sulu and Celebes Seas. Journal of Physical Oceanography, 32(11): 3299–3309.CrossRefGoogle Scholar
  8. Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleaso B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mork, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J., 2011. The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137: 1–28, DOI: 10.1002/qj.776.CrossRefGoogle Scholar
  9. De Boyer Montégut, C., Vialard, J., Shenoi, S. S. C., Shankar, D., Durand, F., Ethé, C., and Madec, G., 2007. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean. Journal of Climate, 20: 3249–3268, DOI: 10.1175/JCLI4148.1.CrossRefGoogle Scholar
  10. Durand, F., Shetye, S. R., Vialard, J., Shankar, D., Shenoi, S. S. C., Ethé, C., and Madec, G., 2004. Impact of temperature inversions on SST evolution in the south-eastern Arabian Sea during the pre-summer monsoon season. Geophysical Research Letters, 31, L01305, DOI: 10.1029/2003GL018906.CrossRefGoogle Scholar
  11. Godfrey, J. S., and Lindstrom, E. J., 1989. The heat budget of the equatorial western Pacific surface mixed layer. Journal of Geophysical Research, 94: 8007–8017.CrossRefGoogle Scholar
  12. Halkides, D. J., Han, W., and Webster, P. J., 2006. Effects of the seasonal cycle on the development and termination of the Indian Ocean Zonal Dipole Mode. Journal of Geophysical Research, 111, C12017, DOI: 10.1029/2005JC003247.CrossRefGoogle Scholar
  13. Han, W., McCreary, J. P., and Kohler, K. E., 2001. Influence of precipitation-evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. Journal of Geophysical Research, 106: 6895–6916.CrossRefGoogle Scholar
  14. Huang, B., and Kinter III, J. L., 2002. Interannual variability in the tropical Indian Ocean. Journal of Geophysical Research, 107, 3199, DOI: 10.1029/2001JC001278.CrossRefGoogle Scholar
  15. Huang, R. X., and Qiu, B., 1994. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. Journal of Physical Oceanography, 24: 1608–1622.CrossRefGoogle Scholar
  16. Jensen, T. G., 1991. Modeling the seasonal undercurrents in the Somali Current system. Journal of Geophysical Research, 96(C12): 22151–22167, DOI: 10.1029/91JC02383.CrossRefGoogle Scholar
  17. Le Blanc, J. L., and Boulanger, J. P., 2001. Propagation and reflection of long equatorial waves in the Indian Ocean from TOPEX/POSEIDON data during the 1993–1998 period. Climate Dynamics, 17: 547–557.CrossRefGoogle Scholar
  18. Levitus, S., 1982. Climatological Atlas of the World Ocean. National Oceanic and Atmospheric Adinistration. NOAA Professional Paper-13, 173pp.Google Scholar
  19. Lewis, M. R., Carr, M., Feldman, G., Esaias, W., and Mc-Clain, C., 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature, 347: 543–544.CrossRefGoogle Scholar
  20. Li, T., Wang, B., Chang, C. P., and Zhang, Y., 2003. A theory for the Indian Ocean Dipole-zonal mode. Journal of the Atmospheric Sciences, 60: 2119–2135.CrossRefGoogle Scholar
  21. Liu, Q., Xie, S. P., Li, L., and Maximenko, N. A., 2005. Ocean thermal advective effect on the annual range of sea surface temperature. Geophysical Research Letters, 32, L24604, DOI: 10.1029/2005GL024493.CrossRefGoogle Scholar
  22. Lukas, T., and Lindstrom, E., 1991. The mixed layer of the western equatorial Pacific Ocean. Jouranl of Geophysical Research, 96: 3343–3357.CrossRefGoogle Scholar
  23. Luo, J. J., Zhang, R. C., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., and Yamagata, T., 2010. Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, 23: 726–742, DOI: http://dx.doi.org/10.1175/2009JCLI3104.1.CrossRefGoogle Scholar
  24. Masson, S, Luo, J. J., Madec, G., Vialard, J., Durand, F., Gualdi, S., Guilyardi, E., Behera, S., Delecluse, P., Navarra, A., and Yamagata, P., 2005. Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophysical Research Letter, 32, L07703, DOI: 10.1029/2004GL021980.CrossRefGoogle Scholar
  25. Monterey, G., and Levitus, S., 1997. Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14. U.S. Gov. Printing Office, Washington D.C., 96pp.Google Scholar
  26. Morioka, Y., Tozuka, T., and Yamagata, T., 2010. Climate variability in the Southern Indian Ocean as revealed by self-organizing maps. Climate Dynamics, 35: 1059–1072, DOI: 10.1007/s00382-010-0843-x.CrossRefGoogle Scholar
  27. Morioka, Y., Tozuka, T., and Yamagata, T., 2011. On the growth and decay of the subtropical dipole mode in the South Atlantic. Journal of Climate, 24: 5538–5554, DOI: 10.1175/2011JCL14010.1.CrossRefGoogle Scholar
  28. Murtugudde, R., McCreary, J. P., and Busalacchi, A. J., 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. Journal of Geophysical Research, 105: 3295–3306.CrossRefGoogle Scholar
  29. Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., and McPhaden, M. J., 2012. TropFlux: air-sea fluxes for the global tropical oceans-description and evaluation. Climate Dynamics, 38: 1521–1543, DOI: 10.1007/s00382-011-1115-0.CrossRefGoogle Scholar
  30. Qiu, B., 2000. Interannual variability of the Kuroshio extension system and its impact on the wintertime SST field. Journal of Physical Oceanography, 30: 1486–1502.CrossRefGoogle Scholar
  31. Qiu, Y., Cai, W., Li, L., and Guo, X., 2012. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophysical Research Letters, 39, L08605, DOI: 10.1029/2012GL051441.CrossRefGoogle Scholar
  32. Rao, R. R., and Sivakumar, R., 1999. On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the onset vortex in the southeastern Arabian Sea. Quarterly Journal of the Royal Meteorological Society, 125: 787–809.CrossRefGoogle Scholar
  33. Rao, R. R., and Sivakumar, R., 2003. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. Journal of Geophysical Research, 108(C1), 3009, DOI: 10.1029/2001JC000907.CrossRefGoogle Scholar
  34. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W., 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate, 15: 1609–1625.CrossRefGoogle Scholar
  35. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the Tropical Indian Ocean. Nature, 401: 360–363.Google Scholar
  36. Sharma, R., Agarwal, N., Momin, I. M., Basu, S., and Agarwal, V. K., 2010. Simulated sea surface salinity variability in the Tropical Indian Ocean. Journal of Climate, 23: 6542–6554, DOI: http://dx.doi.org/10.1175/2010JCLI3721.1.CrossRefGoogle Scholar
  37. Shenoi, S. S. C., Shankar, D., and Shetye, S. R., 1999. On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. Journal of Geophysical Research, 104(C7): 15703–15712.CrossRefGoogle Scholar
  38. Shenoi, S. S. C., Shankar, D., and Shetye, S. R., 2004. Remote forcing annihilates barrier layer in southeastern Arabian Sea. Geophysical Research Letters, 31, L05307, DOI: 10.1029/2003GL019270.CrossRefGoogle Scholar
  39. Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Michael, G. S., Sundar, D., Almeida, A. M., and Santanam, K., 1991. The coastal current off western India during the northeast monsoon. Deep-Sea Research (Part A), 38: 1517–1529.CrossRefGoogle Scholar
  40. Thadathil, P., and Gosh, A. K., 1992. Surface layer temperature inversion in the Arabian Sea during winter. Journal of Oceanography, 48: 293–304.CrossRefGoogle Scholar
  41. Vialard, J., and Delecluse, P., 1998a. An OGCM study for the TOGA decade. Part I. Role of salinity in the physics of the western Pacific fresh pool. Journal of Physical Oceanography, 28: 1071–1088.CrossRefGoogle Scholar
  42. Vialard, J., and Delecluse, P., 1998b. An OGCM study for the TOGA decade. Part II. Barrier-layer formation and variability. Journal of Physical Oceanography, 28: 1089–1106.CrossRefGoogle Scholar
  43. Wang, B., Wu, R., and Li, T., 2003. Atmosphere-warm ocean interaction and its impact on Asian-Australian monsoon variation. Journal of Climate, 16: 1195–1211.CrossRefGoogle Scholar
  44. Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401: 356–360.CrossRefGoogle Scholar
  45. Xie, S. P., Annamalai, H., Schott, F. A., and McCreary, J. P., 2002. Structure and mechanisms of South Indian Ocean climate variability. Journal of Climate, 15: 864–878.CrossRefGoogle Scholar
  46. Xie, S. P., Xu, H., Saji, N. H., Wang, Y., and Liu, W. T., 2006. Role of narrow mountains in large-scale organization of Asian monsoon convection. Journal of Climate, 19: 3420–3429.CrossRefGoogle Scholar
  47. Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K., and Saji, H. N., 2002. The Indian Ocean Dipole: a physical entity. CLIVAR Exchanges, 24: 15–18.Google Scholar
  48. Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K., and Saji, H. N., 2003. Comments on ‘Dipoles, temperature gradient, and tropical climate anomalies’. Bulletin of the American Meteorological Society, 84: 1418–1422.CrossRefGoogle Scholar
  49. Yu, L., Jin, X., and Weller, R. A., 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Technical Report (OA-2008-01), Woods Hole. Massachusetts. 64pp.Google Scholar
  50. Zheng, X. T., Xie, S. P., Vecchi, G. A., Liu, Q., and Hafner, J., 2010. Indian Ocean Dipole response to global warming: analysis of ocean-atmospheric feedbacks in a coupled model. Journal of Climate, 23: 1240–1253.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feiyan Guo
    • 1
  • Qinyu Liu
    • 1
  • Xiao-Tong Zheng
    • 1
  • Shan Sun
    • 2
  1. 1.Physical Oceanography Laboratory and Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of ShandongOcean University of ChinaQingdaoP. R. China
  2. 2.NOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations