Journal of Ocean University of China

, Volume 12, Issue 2, pp 253–259

The distribution and variability of simulated chlorophyll concentration over the tropical Indian Ocean from five CMIP5 models

  • Lin Liu
  • Lin Feng
  • Weidong Yu
  • Huiwu Wang
  • Yanliang Liu
  • Shuangwen Sun


Performances of 5 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating the chlorophyll concentration over the tropical Indian Ocean are evaluated. Results show that these models are able to capture the dominant spatial distribution of observed chlorophyll concentration and reproduce the maximum chlorophyll concentration over the western part of the Arabian Sea, around the tip of the Indian subcontinent, and in the southeast tropical Indian Ocean. The seasonal evolution of chlorophyll concentration over these regions is also reproduced with significant amplitude diversity among models. All of 5 models is able to simulate the interannual variability of chlorophyll concentration. The maximum interannual variation occurs at the same regions where the maximum climatological chlorophyll concentration is located. Further analysis also reveals that the Indian Ocean Dipole events have great impact on chlorophyll concentration in the tropical Indian Ocean. In the general successful simulation of chlorophyll concentration, most of the CMIP5 models present higher than normal chlorophyll concentration in the eastern equatorial Indian Ocean.

Key words

Indian Ocean chlorophyll concentration climatology seasonal variability interannual variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arief, D., and Murray, S. P., 1996. Low-frequency fluctuations in the Indonesian throughflow through Lombok Strait. Journal of Geophysical Research, 101: 12 455–12 464.CrossRefGoogle Scholar
  2. Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T., 2004. Individual and combined influences of ENSO and Indian Ocean Dipole on the Indian summer monsoon. Journal of Climate, 17: 3141–3155.CrossRefGoogle Scholar
  3. Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S., and Navarra, A., 2005. Paramount impact of the Indian Ocean Dipole on the east African short rains: A CGCM study. Journal of Climate, 18: 4514–4530.CrossRefGoogle Scholar
  4. Clarke, A. J., and Liu, X., 1993. Observations and dynamics of semiannual and annual sea levels near the eastern Indian Ocean boundary. Journal of Physical Oceanography, 23: 386–399.CrossRefGoogle Scholar
  5. Dey, S., and Singh, R. P., 2003. Comparison of chlorophyll distributions in the northeastern Arabian Sea and southern Bay of Bengal using IRS-P4 Ocean Color Monitor data. Remote Sensing of Environment, 85: 424–428.CrossRefGoogle Scholar
  6. Hu, R. J., and Liu, Q. Y., 2005. A heat budget study on the mechanism of SST variations for the regions of the Indian Ocean Dipole. Journal of Ocean University of China, 4(4): 167–175.CrossRefGoogle Scholar
  7. Lévy, M., Shankar, D., André, J. M., Shenoi, S. S. C., Durand, F., and de Boyer Montégut, C., 2007. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. Journal of Geophysical Research, 112, C12014, DOI: 10.1029/2007JC004090.CrossRefGoogle Scholar
  8. Li, C. Y., Zhou, W., Jia, X. L., and Wang, X., 2006. Decadal/interdecadal variations of ocean temperature and its impacts on climate. Advances in Atmospheric Sciences, 23: 964–981.CrossRefGoogle Scholar
  9. Li, G., Lin, Q., and Ni, G., 2012. Vertical patterns of early summer chlorophyll a concentration in the Indian Ocean with special reference to the variation of deep chlorophyll maximum. Journal of Marine Biology, 2012, DOI: 10.1155/2012/801248.Google Scholar
  10. Liu, L., Yu, W. D., and Li, T., 2011. Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 Models. Journal of Climate, 24: 4941–4958.CrossRefGoogle Scholar
  11. Liu, X., Wang, J., Cheng, X., and Du, Y., 2012. Abnormal upwelling and chlorophyll-a concentration off South Vietnam in summer 2007. Journal of Geophysical Research, 117, C07021, DOI: 10.1029/2012JC008052.CrossRefGoogle Scholar
  12. Longhurst, A., 1993. Seasonal cooling and blooming in the tropical oceans. Deep-Sea Research I, 40: 2145–2165.CrossRefGoogle Scholar
  13. Matthew, H. E., Caroline, C. U., and Santoso, A., 2006. Interannual rainfall extremes over Southwest Western Australia linked to Indian Ocean climate variability. Journal of Climate, 19: 1948–1969.CrossRefGoogle Scholar
  14. McClain, C. R., Cleave, M. L., Feldman, G. C., Gregg, W. W., Hooker, S. B., and Kuring, N., 1998. Science quality SeaWiFS data for global biospheric research. Sea Technology, 39: 10–16.Google Scholar
  15. McClain, C. R., Feldman, G. C., and Hooker, S. B., 2004. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Research II, 51: 5–42.CrossRefGoogle Scholar
  16. Rahul Chand Reddy, P., and Salvekar, P. S., 2008. Phytoplankton blooms induced/sustained by cyclonic eddies during the Indian Ocean Dipole event of 1997 along the southern coasts of Java and Sumatra. Biogeosciences Discussions, 5: 3905–3918, DOI: 10.5194/bgd-5-3905-2008.CrossRefGoogle Scholar
  17. Saji, N. H., and Yamagata, T., 2003a. Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25: 151–169.CrossRefGoogle Scholar
  18. Saji, N. H., and Yamagata, T., 2003b. Structure of SST and surface wind variability during Indian Ocean Dipole mode years: COADS observations. Journal of Climate, 16: 2735–2751.CrossRefGoogle Scholar
  19. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature, 401: 360–363.Google Scholar
  20. Sarangi, R. K., Nayak, S., and Panigraphy, R. C., 2008. Monthly variability of chlorophyll and associated physical parameters in the southwest Bay of Bengal water using remote sensing data. Indian Journal of Marine Sciences, 37(3): 256–266.Google Scholar
  21. Sarma, V. V. S. S., 2006. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998. Journal of Earth System Science, 115(4): 433–450.CrossRefGoogle Scholar
  22. Sprintall, J., Gordon, A., Murtugudde, L. R., and Susanto, R. D., 2000. A semi-annual Indian Ocean forced Kelvin waves observed in the Indonesian Seas. Journal of Geophysical Research, 105: 17 217–17 230.CrossRefGoogle Scholar
  23. Sun, S. W., Lan, J., and Wang, Y., 2010. Variations of SST and thermocline depth in the Tropical Indian Ocean during Indian Ocean Dipole events. Journal of Ocean University of China, 2: 120–127.Google Scholar
  24. Susanto, R. D., and Marra, J., 2005. Effect of the 1997/98 El Niño on chlorophyll a variability along the southern coasts of Java and Sumatra. Oceanography, 18(4): 124–127.CrossRefGoogle Scholar
  25. Susanto, R. D., Moore II, T. S., and Marra, J., 2006. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry, Geophysics, Geosystems, 7, Q05021, DOI: 10.1029/2005GC001009.CrossRefGoogle Scholar
  26. Tang, D. L., Kawamura, H., and Luis, J. A., 2002. Short-term variability of phytoplankton blooms associated with a cold eddy on the North-western Arabian Sea. Remote Sensing of Environment, 81(1): 82–89.CrossRefGoogle Scholar
  27. Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93: 485–498.CrossRefGoogle Scholar
  28. Vinayachandran, P. N., Chauhan, P., and Nayak, S. R., 2004. Biological response of the sea around Sri Lanka to summer monsoon. Geophysical Research Letters, 31, L01302, DOI: 10.1029/2003GL018533.CrossRefGoogle Scholar
  29. Wang, C., and Wang, X., 2012. El Niño Modoki I and II classifying by different impacts on rainfall in Southern China and typhoon tracks. Journal of Climate, DOI: 10.1175/JCLI-D-12-00107.1.Google Scholar
  30. Wang, X., Li, C. Y., and Zhou, W., 2006. Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. International Journal of Climatology, 26: 595–606.CrossRefGoogle Scholar
  31. Wang, X., Wang, D. X., and Zhou, W., 2009. Decadal variability of twentieth century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophysical Research Letters, 36, L11701, DOI: 10.1029/2009GL037929.CrossRefGoogle Scholar
  32. Wang, X., Wang, D. X., Zhou, W., and Li, C. Y., 2012. Interdecadal modulation of the influence of La Niña events on meiyu rainfall over the Yangtze River Valley. Advances in Atmospheric Sciences, 29(1): 157–168, DOI: 10.1007/s00376011-1021-8.CrossRefGoogle Scholar
  33. Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401: 356–360.CrossRefGoogle Scholar
  34. Wiggert, J. D., Vialard, J., and Behrenfeld, M. J., 2009. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. Indian Ocean Biogeochemical Processes and Ecological Variability, Geophysical Monograph Series 185, Wiggert, J. D. et al., eds., AGU, Washington, D. C., 385–407, DOI: 10.1029/2008GM000776.CrossRefGoogle Scholar
  35. Xiu, P., and Liu, Y., 2006. Study on the correlation between chlorophyll maximum and remote sensing data. Journal of Ocean University of China, 5(3): 213–218.CrossRefGoogle Scholar
  36. Yu, W., Xiang, B., Liu, L., and Liu, N., 2005. Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophysical Research Letters, 32, L24706, DOI: 10.1029/2005GL024327.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lin Liu
    • 1
  • Lin Feng
    • 1
  • Weidong Yu
    • 1
  • Huiwu Wang
    • 1
  • Yanliang Liu
    • 1
  • Shuangwen Sun
    • 1
  1. 1.Center for Ocean and Climate Research, First Institute of OceanographyState Oceanic AdministrationQingdaoP. R. China

Personalised recommendations