Journal of Ocean University of China

, Volume 9, Issue 2, pp 99–115 | Cite as

Numerical simulation of the genesis of typhoon Durian (2001) over the South China Sea: The effect of sea surface temperature



Typhoon Durian (2001), which formed over the South China Sea (SCS), was simulated by using the Weather Research and Forecasting (WRF) model. The genesis of typhoon Durian which formed in the monsoon trough was reproduced by numerical simulations. The simulated results agree reasonably well with observations. Two numerical experiments in which the sea surface temperature (SST) was either decreased or increased were performed to investigate the impact of the SST on the genesis of the typhoon. When the SST was decreased by 5°C uniformly for all grids in the model, the winds calculated became divergent in the lower troposphere and convergent in the upper troposphere, creating conditions in which the amount of total latent heat release (TLHR) was low and the tropical cyclone (TC) could not be formed. This simulation shows the importance of the convergence in the lower troposphere and the divergence in the upper troposphere for the genesis of the initial vortex. When the SST was increased by 1°C uniformly for all grids, a stronger typhoon was generated in the results with an increase of about 10 m s−1 in the maximum surface wind speed. Only minor differences in intensity were noted during the first 54 h in the simulation with the warmer SST, but apparent differences in intensity occurred after 54 h when the vortex began to strengthen to typhoon strength. This experiment shows that warmer SST will speed the strengthening from tropical storm strength to typhoon strength and increase the maximum intensity reached, while only minor impact can be seen during the earlier stage of genesis before the TC reaches the tropical storm strength. The results suggest that the amount of TLHR may be the dominant factor in determining the formation and the intensification of the TC.

Key words

tropical cyclone WRF numerical simulation cyclone genesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agudelo, P. A., and Curry, J. A., 2004. Analysis of spatial distribution in tropospheric temperature trends. Geophys. Res. Lett., 31, L22207, doi: 10.1029/2004GL020818.CrossRefGoogle Scholar
  2. Anthes, R. A., Corell, R. W., Holland, G., Hurrell, J. W., McCracken, M. C., and Trenberth, K. E., 2006. Hurricanes and global warming-Potential linkages and consequences. Bull. Am. Meteorol. Soc., 87: 623–628.CrossRefGoogle Scholar
  3. Chan, J. C. L., and Liu, K. S., 2004. Global warming and western north Pacific typhoon activity from an observational perspective. J. Clim., 17: 4590–4602.CrossRefGoogle Scholar
  4. Charney, J. G., and Eliassen, A., 1964. On the growth of the hurricane depression. J. Atmos. Sci., 21: 68–75.CrossRefGoogle Scholar
  5. Chen, L. S., and Ding, Y. H., 1979. An Introduction to the West Pacific Ocean Typhoons. Science Press, Beijing, 491pp (in Chinese).Google Scholar
  6. Chen, F., and Dudhia, J., 2001. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev., 129: 569–585.CrossRefGoogle Scholar
  7. Chen, S.-H., and Sun, W. Y., 2002. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Japan, 80: 99–118.CrossRefGoogle Scholar
  8. Curry, J. A., Webster, P. J., and Holland, G. J., 2006. Mixing politics and science in testing the hypothesis that greenhouse warming is causing a global increase in hurricane intensity. Bull. Am. Meteorol. Soc., 87: 1025–1038.CrossRefGoogle Scholar
  9. Davis, C. A., and Bosart, L. F., 2001. Numerical simulation of the genesis of hurricane Diana (1984). Part I: Control simulation. Mon. Weather Rev., 129: 1859–1881.CrossRefGoogle Scholar
  10. Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46: 3077–3107.CrossRefGoogle Scholar
  11. Elsberry, R. L., 2004. Monsoon-related tropical cyclones in East Asia. In: East Asian Monsoon. Chang, C.-P., ed., World Scientific Press, Singapore, 463–498.Google Scholar
  12. Emanuel, K. A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43: 585–604.CrossRefGoogle Scholar
  13. Emanuel, K. A., 1987. The dependence of hurricane intensity on climate. Nature, 326: 483–485.CrossRefGoogle Scholar
  14. Emanuel, K. A., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436: 686–688.CrossRefGoogle Scholar
  15. Fisher, E. L., 1958. Hurricane and the sea surface temperature field. J. Meteorol., 15: 328–333.Google Scholar
  16. Freilich, M. H., and Dunbar, R. S., 1999. The accuracy of the NSCAT-1 vector winds: comparisons with NDBC buoys. J. Geophys. Res., 104: 11 231–11 246.CrossRefGoogle Scholar
  17. Gray, W. M., 1968. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev., 96: 669–700.CrossRefGoogle Scholar
  18. Gray, W. M., 1998. The formation of tropical cyclones. Meteorol. Atmos. Phys., 67: 37–69.CrossRefGoogle Scholar
  19. Hendricks, E. A., Montgomery, M. T., and Davis, C. A., 2004. The role of ‘vortical’ hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61: 1209–1232.CrossRefGoogle Scholar
  20. Holland, G. J., 1997. Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54: 2519–2541.CrossRefGoogle Scholar
  21. Janjic, Z. I., 1990. The step-mountain coordinate: physical package, Mon. Weather Rev., 118: 1429–1443.CrossRefGoogle Scholar
  22. Janjic, Z. I., 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Weather Rev., 122: 927–945.CrossRefGoogle Scholar
  23. Janjic, Z. I., 2000. Comments on ‘Development and evaluation of a convection scheme for use in climate Models’. J. Atmos. Sci., 57: 3686.CrossRefGoogle Scholar
  24. Kasahara, A., 1961. A numerical experiment on the development of tropical cyclone. J. Meteor., 18: 259–282.Google Scholar
  25. Lau, K. H., Zhang, Z. F., Lam, H. Y., and Chen, S. J., 2003. Numerical simulation of a South China Sea typhoon Leo (1999). Meteorol. Atmos. Phys., 83: 147–161.Google Scholar
  26. Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C., 2000. Warming of the world ocean. Science, 287: 2225–2229.CrossRefGoogle Scholar
  27. Levitus, S., Antonov, J. I., and Boyer, T. P., 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.CrossRefGoogle Scholar
  28. Lin, Y.-L., Farley, R. D., and Orville, H. D., 1983. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol., 22: 1065–1092.CrossRefGoogle Scholar
  29. Liu, Y., Zhang, D. L., and Yau, M. K., 1997. A multiscale numerical study of Hurricane Andrew (1992). Part I: Sxplicit simulation and verification. Mon. Weather Rev., 125: 3073–3093.CrossRefGoogle Scholar
  30. McBride, J. L., 1995. Tropical cyclone formation. Chap.3, Global Perspectives on Tropical Cyclones. Technical Document. WMO/TD No. 693, World Meteorological Organization, Geneva, Switzerland, 63–105.Google Scholar
  31. Mellor, G. L., and Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20: 851–875.CrossRefGoogle Scholar
  32. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A., 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14): 16 663–16 682.CrossRefGoogle Scholar
  33. Montgomery, M. T., and Farrell, B., 1993. Tropical cyclone formation. J. Atmos. Sci., 50: 285–310.CrossRefGoogle Scholar
  34. Montgomery, M. T., Nicholis, M. E., Cram, T. A., and Saunders, A. B., 2006. A vortical hot tower route to tropical cyclogenesis, J. Atmos. Sci., 63: 355–386.CrossRefGoogle Scholar
  35. Nicholls, N., 1984. Southern Oscillation, sea surface temperature, and interannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4: 661–670.CrossRefGoogle Scholar
  36. Ooyama, K., 1969. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26: 3–40.CrossRefGoogle Scholar
  37. Ooyama, K., 1982. Conceputal evolution of the theory and modeling of the tropical cyclone. J. Meteorol. Soc. Jpn., 60: 369–379.Google Scholar
  38. Rodgers, E. B., and Adler, R. F., 1981. Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer, Mon. Weather Rev., 109: 506–521.CrossRefGoogle Scholar
  39. Rotunno, R., and Emanuel, K., 1987. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44: 542–561.CrossRefGoogle Scholar
  40. Riehl, H., 1950. A model for hurricane formation. J. Appl. Phys., 21: 917–925.CrossRefGoogle Scholar
  41. Tory, K. J., Montgomery, M. T., and Davidson, N. E., 2006a. Prediction and diagnosis pf tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63: 3077–3090.CrossRefGoogle Scholar
  42. Tory, K. J., Montgomery, M. T., Davidson, N. E., and Kepert, J. D., 2006b. Prediction and diagnosis pf tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation. J. Atmos. Sci., 63: 3091–3113.CrossRefGoogle Scholar
  43. Tuleya, R. E., and Kurihara, Y., 1982. A note on the sea surface temperature sensitivity of a numerical model of tropical storm genesis. Mon. Weather Rev., 110: 2063–2069.CrossRefGoogle Scholar
  44. Wang, L., Fung, C. H., and Lau, K.H., 2007a. The upper ocean thermal structure and the genesis location of tropical cyclones in the South China Sea. J. Ocean Univ. Chin., 6(2): 125–131.CrossRefGoogle Scholar
  45. Wang, L., Lau, K. H., Fung, C. H., and Gan, J. P., 2007b. The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on the geneses of tropical cyclones in the South China Sea, Tellus A, 59(4): 562–569, doi:10.1111/j.1600-0870.2007.00249.x.CrossRefGoogle Scholar
  46. Wang, L., Lau, K. H., Fung, C. H., and Zhang, Q. H., 2008a. Features of ocean surface winds observed by the QuikSCAT satellite before tropical cyclogenesis over the SCS. J. Ocean Univ. Chin., 7(3): 241–245, doi:10.1007/s11802-008-0241-8.CrossRefGoogle Scholar
  47. Wang, L., Lau, K. H., Zhang, Q. H., and Fung, C. H., 2008b. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys. Res. Lett., 35, L10802, doi:10.1029/2008GL033446.CrossRefGoogle Scholar
  48. Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309: 1844–1846.CrossRefGoogle Scholar
  49. Wendland, W. M., 1977. Tropical storm frequencies related to sea surface temperatures. J. Appl. Meteorol., 16: 477–481.CrossRefGoogle Scholar
  50. Wentz, F. J., 1997. A well-calibrated ocean algorithm for Special Sensor Microwave/Imager, J. Geophys. Res., 102: 8703–8718.CrossRefGoogle Scholar
  51. Wentz, F. J., and Spencer, R. W., 1998. SSM/I rain retrielvals within a unified all-weather ocean algorithm, J. Atmos. Sci., 55: 1613–1627.CrossRefGoogle Scholar
  52. Wu, L. G., Braun, S. A., Halverson, J., and Heymsfield, G., 2006. A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63: 65–86.CrossRefGoogle Scholar
  53. Zhang, J., Fei, J. F., Du, T., Wang, Y., Cui, X. Y., Huang, X. Y., and Li, Q. M., 2008. Effect of sea spray on the numerical simulation of super typhoon ‘Ewiniar’. J. Ocean Univ. Chin., 7(4): 362–372, doi:10.1007/s11802-008-0362-0.CrossRefGoogle Scholar
  54. Zhang, Q.-H., Chen, S. J., Kuo, Y. H., Lau, K. H., and Anthes, R. A., 2005. Numerical study of a typhoon with a large eye: model simulation and verification. Mon. Weather Rev., 133: 725–742.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsHong Kong University of Science and TechnologyHong KongP. R. China
  2. 2.Institute for the EnvironmentHong Kong University of Science and TechnologyHong KongP. R. China

Personalised recommendations