Journal of Ocean University of China

, Volume 7, Issue 1, pp 60–64 | Cite as

Heavy metal bioaccumulation and toxicity with special reference to microalgae

Review

Abstract

The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

Key words

bioaccumulation heavy metal microalgae toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhiya, J., X. H. Cai, R. T. Sayre, and S. Traina, 2002. Binding of aqueous cadmium by the lyophilized biomass of Chlamy domonas reinhardtii. Colloids Surf. A Physiochem. Eng. Aspects, 210: 1–11.CrossRefGoogle Scholar
  2. Alia, M. P., and J. Matysik, 2001. Effect of proline on the production of singlet oxygen. Amino. Acids., 21: 195–200.CrossRefGoogle Scholar
  3. Atri, N., and L. C. Rai, 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Biotech., 13: 544–551.Google Scholar
  4. Avery, S. V., 2001. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol., 49: 111–142.CrossRefGoogle Scholar
  5. Bae, W., C. H. Wu, J. Kostal, A. Mulchandani, and W. Chen, 2003. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl. Environ. Microbiol., 69(6): 3176–3180.CrossRefGoogle Scholar
  6. Bajguz, A., 2000. Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem., 38: 797–801.CrossRefGoogle Scholar
  7. Bishop, P. L., 2002. Pollution Prevention: Fundamentals and Practice. Tsinghua University Press, Beijing, 768pp.Google Scholar
  8. Cardozo, K. H. M., M. A. L. Oliveira, M. F. M. Tavares, P. Colepicolo, and E. Pinto, 2002. Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate Lingulodinium polyedrum. Biol. Rhythm Res., 33: 371–381.CrossRefGoogle Scholar
  9. Carr, H. P., F. A. Carino, M. S. Yang, and M. H. Wong, 1998. Characterization of cadmium-binding capacity of Chlorella Vulgaris. Bull. Envion. Cantam. Toxicol., 60: 433–440.CrossRefGoogle Scholar
  10. Cobbett, C., and P. Goldsbrough, 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol., 53: 159–182.CrossRefGoogle Scholar
  11. Conner, S. D., and S. L. Schimid, 2003. Regulated portals of entry into the cell. Nature, 422: 37–44.CrossRefGoogle Scholar
  12. De Filippis, L. F., and C. K. Pallaghy, 1994. Heavy metals: sources and biological effects. In: Algae and Water Pollution. Rai, L. C., et al., eds., E. Schweizerbartsche Verlagsbuch-handlung, Stuttgart, 31–37.Google Scholar
  13. De Schamphelaere, K. A. C., F. M. Vasconncelos, D. G. Heijerick, F. M. G. Tack, K. Delbeke, H. E. Allen, et al., 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem., 22: 2454–2465.CrossRefGoogle Scholar
  14. El-Enany, A. E., and A. A. Issa, 2000. Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ. Toxicol. Phar., 8: 95–101.CrossRefGoogle Scholar
  15. El-Naggar, A. H., M. A. Osman, and E. A. El-Mohsenawy, 1999. Cobalt and lead toxicities on Calothrix fusca and Nostoc muscorum. J. Union Arab Boil. Cairo, 7: 421–441.Google Scholar
  16. El-Sheekl, M. M., M. E. El-Naggar, M. E. H. Osman, and E. El-Mazaly, 2003. Effect of Cobalt on growth, pigments and the photosynthetic electron transport in Monoraphdium minutum and Nitzchia perminuta. Braz. J. Plant Physiol., 15(3): 159–166.Google Scholar
  17. Fargasova, A., 1999. The green alga Scenedesmus quadricauda — a subject for the study of inhibitory effects of Cd, Cu, Zn, Pb and Fe. Biologia, 54: 393–398.Google Scholar
  18. Fathi, A. A., F. T. Zaki, and A. A. Fathy, 2000. Bioaccumulation of some heavy metals and their influence on the metabolism of Scenedesmus bijuga and Anabaena spiroides. Egypt. J. Biotech., 7: 293–307.Google Scholar
  19. Ferraz, A. I., T. Tavares, and J. A. Teixeira, 2004. Cr (III) removal and recovery from Saccharomyces cerevisiae. Chem. Eng. J., 105: 11–20.CrossRefGoogle Scholar
  20. Franklin, N. M., M. S. Adams, J. L. Stauber, and R. P. Lim, 2001. Development of a rapid enzyme inhibition bioassay with marine and freshwater microalgae using flowcytometry. Arch. Environ. Contam. Toxicol., 40: 469–480.CrossRefGoogle Scholar
  21. Franklin, N. M., J. L. Stauber, S. J. Markich, and R. P. Lim, 2000. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol., 48: 275–289.CrossRefGoogle Scholar
  22. Gaur, J. P., and L. C. Rai, 2001. Heavy metal tolerance in algae. In: Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanisms. Rai L. C., and Gaur J. P., eds., Springer-Verlag, Berlin, 363–388.Google Scholar
  23. Gharieb, M. M., and G. M. Gadd, 2004. Role of glutathione in detoxification of metal (loid)s by Saccharomyces cerevisiae. BioMetals, 17: 183–188.CrossRefGoogle Scholar
  24. Goyal, N., S. C. Jain, and U.C. Banerjee, 2003. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res., 7: 311–319.CrossRefGoogle Scholar
  25. Hassler, C. S., and K. J. Wilkinson, 2003. Failure of the biotic ligand and freeion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem., 22: 620–626.CrossRefGoogle Scholar
  26. Heng, L.Y., K. Jusoh, C. H. M. Ling, and M. Idris, 2004. Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull. Environ. Contam. Toxicol., 72: 373–379.CrossRefGoogle Scholar
  27. Hu, S., K. W. K. Lau, and M. Wu, 2001. Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci., 161: 987–996.CrossRefGoogle Scholar
  28. Jordanova, A., A. Strezov, M. Ayranov, N. Petkov, and T. Stoilova, 1999. Heavy metal assessment in algae, sediments and water from the Bulgarian Black Sea Coast. Water Sci. Tech., 39: 207–212.CrossRefGoogle Scholar
  29. Kuroda, K., M. Ueda, S. Shibasaki, and A. Tanaka, 2002. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to copper ion. Appl. Microbiol. Biotech., 59: 259–264.CrossRefGoogle Scholar
  30. Lamaia, C., M. Kruatrachuea, P. Pokethitiyooka, E. S. Upathamb, and V. Soonthornsarathoola, 2005. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta: A laboratory study. Sci. Asia, 31: 121–127.CrossRefGoogle Scholar
  31. Lasheen, M. R., 1990. Effect of cadmium, copper and chromium (VI) on the growth of nile algae. Water Air Soil Poll., 50: 19–30.CrossRefGoogle Scholar
  32. Leborans, G. F., and A. Novillo, 1996. Toxicity and bioaccumulation of cadmium in Olishodiscus luteus (Raphidophyceae). Water Res., 30: 57–62.CrossRefGoogle Scholar
  33. Liberton, M., R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, 2006. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma, 227: 129–138.CrossRefGoogle Scholar
  34. Liu, R. X., H. X. Tang, and W. X. Lao, 2002. Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials. Prog. Chem., 14: 87–92 (in Chinese).Google Scholar
  35. Ma, M., W. Zhu, Z. Wang, and G. J. Witkaamp, 2003. Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat. Toxicol., 63: 221–228.CrossRefGoogle Scholar
  36. Macfarlane, G. R., and M. D. Burchett, 2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the greymangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull., 42: 233–240.CrossRefGoogle Scholar
  37. Mehta, S. K., and J. P. Gaur, 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol., 143: 253–259.CrossRefGoogle Scholar
  38. Morlon, H., C. Fortin, C. Adam, and J. Garnier-Laplace, 2005. Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii. Radioprotection, 40: 101–106.CrossRefGoogle Scholar
  39. Okamoto, O. K., C. S. Asano, E. Aidar, and P. Colepicolo, 1996. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis. J. Phycol., 32: 74–79.CrossRefGoogle Scholar
  40. Pawlik-Skowrońska, B., 2002. Correlations between toxic Pb effects and production and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ. Pollut., 119: 119–127.CrossRefGoogle Scholar
  41. Pawlik-Skowrońska, B., and T. Skowroński, 2001. Freshwater algae. In: Metals in the Environment: Analysis by Biodiversity. Prasad M. N. V., ed., Marcel Dekker, New York, 59–94.Google Scholar
  42. Pinto, E., T. C. S. Sigaud-Kutner, M. A. S. Leitaõ, O. K. Okamoto, and D. Morse, 2003. Heavy metal-induced oxidative stress in algae. J. Phycol., 39:1008–1018.CrossRefGoogle Scholar
  43. Rai, P. K., N. Mallick, and L. C. Rai, 1993. Physiological and biochemical studies on an acid-tolerant Chlorella vulgaris under copper stress. J. Gen. Appl. Microbiol., 39: 529–540.CrossRefGoogle Scholar
  44. Rangsayatorn, N., E. S. Upatham, M. Kruatrachue, P. Pokethitiyook, and G.R. Lanza, 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut., 119: 45–53.CrossRefGoogle Scholar
  45. Sies, H., 1999. Glutathione and its role in cellular functions. Free Radic. Biol. Med., 27: 916–921.CrossRefGoogle Scholar
  46. Siripornadulsil, S., S. Traina, S. D. Verma, and R. T. Sayre, 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell, 14: 2837–2847.CrossRefGoogle Scholar
  47. Stauber, J. L., and C. M. Davies, 2000. Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ. Rev., 8: 255–301.CrossRefGoogle Scholar
  48. Stauber, J. L., and T. M. Florence, 1990. Mechanism of toxicity of zinc to the marine diatom Nitzschia closterium. Mar. Biol., 105: 519–524.CrossRefGoogle Scholar
  49. Tripathi, B. N., A. Singh, and J. P. Gaur, 2000. Impact of heavy metal pollution on algal assemblages. Envsciences, 9: 1–7.Google Scholar
  50. Tripathi, B. N., and J. P. Gaur, 2006. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma, 229: 1–9.CrossRefGoogle Scholar
  51. Van Ho, A., D. M. Ward, and J. Kaplan, 2002. Transition metal transport in yeast. Ann. Rev. Microbiol., 56: 237–261.CrossRefGoogle Scholar
  52. Verma, D. P. S., 1999. Osmotic stress tolerance in plants: Role of praline and sulfur metabolisms. In: Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Shinozaki K., and Yamaguchi-Shinozaki K., eds., R. G. Landers Company, Texas, 153–168.Google Scholar
  53. Vijver, M. G., C. A. M. V. Gestel, R. P. Lanno, N. M. Van Straalen, and W. J. G. M. Peijnenburg, 2004. Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci. Technol., 38: 4705–4712.CrossRefGoogle Scholar
  54. Wang, J. L., 2005. Microbial cell-surface display and the application in bioremediation of contaminated environment. Chin. Biotechnol., 25: 112–117 (in Chinese).Google Scholar
  55. Wang, J., and C. Chen, 2006. Biosorption of heavy metals by Saccharomyces cerevisiae. Biotech. Adv., 24: 427–451.CrossRefGoogle Scholar
  56. Wang, J. L., 2002. Microbial Immobilization Techniques and Water Pollution Control. Science Press, Beijing, 326pp (in Chinese).Google Scholar
  57. Wilde, K. L., J. L. Stauber, S. J. Markich, N. M. Franklin, and P. L. Brown, 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.) Arch. Environ. Contam. Toxicol., 51: 174–185.CrossRefGoogle Scholar
  58. Wong, S. L., L. Nakamoto, and J. F. Wainwright, 1994. Identification of toxic metals in affected algal cells in assays of wastewaters. J. Appl. Phycol., 6: 405–414.CrossRefGoogle Scholar
  59. Zalups, R. K., and S. Ahmad, 2003. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol., 186: 163–188.CrossRefGoogle Scholar

Copyright information

© Science Press 2007

Authors and Affiliations

  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoP. R. China
  2. 2.Department of Crop Science, Faculty of AgricultureUniversity of RuhunaKamburupitiyaSri Lanka

Personalised recommendations