Advertisement

Optoelectronics Letters

, Volume 15, Issue 2, pp 127–131 | Cite as

Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers

  • Li-shuang Wu (吴丽双)
  • Xiao-lin Wang (王晓琳)
  • Jia-ping You (尤嘉萍)
  • Zi-sheng Su (苏子生)
  • Hui-shan Yang (杨惠山)Email author
Article
  • 4 Downloads

Abstract

White organic light-emitting devices (WOLEDs) were fabricated by using a highly blue fluorescent dye of 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl (DPVBi) and a red fluorescent dye of 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2), together with a green fluorescent dye of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyroyran-o(6,7-8-i,j) quinolizin-11-one (C545T). The multilayer WOLEDs does not involve the doping process. The structure of the device is indium tin oxide (ITO)/4,4’,4”-tris{N,-(3-methylphenyl)-N-phenylamin}triphenylamine (m-MTDATA) (55 nm)/ N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biph-enyl-4,4’-diamine (NPB) (10 nm)/ DPVBi (8 nm)/ C545T (x nm)/ DPVBi (5 nm)/ DCM2 (y nm)/ tris- (8-hydroxyquinoline) aluminum (Alq3) (60nm)/ LiF (1 nm)/ Al, where the DPVBi is introduced as a spacer. By changing the thicknesses of dual ultrathin layers of C545T and DCM2, the WOLED is obtained. When x=y=0.05, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.262 6, 0.351 4) at 4 V to (0.214 7, 0.269 3) at 12 V that are well in the white region. Its maximum luminance is 41400 cd/m2 at 13 V, and the maximum current efficiency and the maximum power efficiency are 7.95 cd/A at 6 V and 5.37 lm/W at 5 V, respectively.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. W. Tang and S. A. VanSlkye, Appl. Phys. Lett. 51, 913 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    A. R. Duggal, J. J. Shiang, C. M. Heller and D. F. Foust, Appl. Phys. Lett. 80, 3470 (2002).ADSCrossRefGoogle Scholar
  3. [3]
    J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).ADSCrossRefGoogle Scholar
  4. [4]
    B. W. D’Andrade, R. J. Holmes and S. R. Forrest, Adv. Mater. 16, 624 (2004).CrossRefGoogle Scholar
  5. [5]
    C. H. Chuen, Y. T. Tao, F. I. Wu and C. F. Shu, Appl. Phys. Lett. 85, 4609 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    C. W. Ko and Y. T. Tao, Appl. Phys. Lett. 79, 4234 (2004).ADSCrossRefGoogle Scholar
  7. [7]
    T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Appl. Phys. Lett. 81, 3329 (2002).ADSCrossRefGoogle Scholar
  8. [8]
    C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson and R. C. Wong, Appl. Phys. Lett. 78, 1622 (2001).ADSCrossRefGoogle Scholar
  9. [9]
    Chang-Bum Moon, Wook Song, Mei Meng, Nam Ho Kim, Ju-An Yoon, Woo Young Kim, Richard Wood and Peter Mascher, J. Lumin. 146, 314 (2014).CrossRefGoogle Scholar
  10. [10]
    Yu-Seok Seo and Dae-Gyu Moon, Current Applied Physics 14, 1188 (2014).ADSCrossRefGoogle Scholar
  11. [11]
    Xie Wen-fa, Zhao Yi, Li Chuan-nan and Liu Shi-yong, Semicond. Sci. Technol. 20, L57 (2005).CrossRefGoogle Scholar
  12. [12]
    Yang Hui-shan, Zhao Yi, Hou Jing-ying and Liu Shi-yong, Displays 27, 183 (2006).CrossRefGoogle Scholar
  13. [13]
    Xie Wen-fa, Wu Zhi-jun, Liu Shi-yong and Lee Shuit-tong, J. Phys. D: Appl. Phys. 36, 2331 (2003).CrossRefGoogle Scholar
  14. [14]
    Zhao Juan, Yu Jun-sheng, Wang Xiao and Zhang Lei, Solid-State Electronics 81, 63 (2013).CrossRefGoogle Scholar
  15. [15]
    Yang Hui-shan, J. Lumin. 142, 231 (2013).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li-shuang Wu (吴丽双)
    • 1
  • Xiao-lin Wang (王晓琳)
    • 1
  • Jia-ping You (尤嘉萍)
    • 1
  • Zi-sheng Su (苏子生)
    • 1
  • Hui-shan Yang (杨惠山)
    • 1
    Email author
  1. 1.Department of PhysicsQuanzhou Normal UniversityQuanzhouChina

Personalised recommendations