Advertisement

Optoelectronics Letters

, Volume 15, Issue 2, pp 132–134 | Cite as

The effects of Na on the growth of Cu2ZnSnSe4 thin films using low-temperature evaporation process

  • Ding Sun (孙顶)Email author
  • Yu-li Li (李玉丽)
  • Yu-hong Zhang (张玉红)
  • Xiu-juan Guo (郭秀娟)
  • Li Zhang (张力)
  • Li-xin Zhang (张立新)
  • Xiao-dan Zhang (张晓丹)
Article
  • 5 Downloads

Abstract

Cu2ZnSnSe4 (CZTSe) absorbers were deposited on borosilicate glass substrate using the low-temperature process, and different Na incorporation methods were applied to investigate the effects of Na on the CZTSe growth. Na was diffused into some of the absorbers after growth, which led to strongly improved device performance compared with Na-free cells. With the post-deposition treatment, the effect of Na on CZTSe growth was excluded, and most of Na was expected to reside at grain boundaries. The conversion efficiency of the completed device was improved due to the enhancement of open circuit voltage and fill factor. The efficiency of 2.85% was achieved at substrate temperature as low as 420 °C.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y and Mitzi D B, Adv. Energy Mater. 3, 34 (2013).CrossRefGoogle Scholar
  2. [2]
    Sun D, Ge Y, Xu S Z, Zhang L, Li B Z, Wang G C, Wei C C, Zhao Y and Zhang X D, Chin. Phys. Lett. 32, 128401 (2015).ADSCrossRefGoogle Scholar
  3. [3]
    Sun D, Xu S Z, Zhang L, Chen Z, Ge Y, Wang N, Liang X J, Wei C C, Zhao Y and Zhang X D, J. Semicond. 36, 044009 (2015).CrossRefGoogle Scholar
  4. [4]
    Sun D, Ge Y, Zhang L, Xu S Z, Chen Z, Wang N, Liang X J, Wei C C, Zhao Y and Zhang X D, J. Semicond. 37, 013004 (2016).CrossRefGoogle Scholar
  5. [5]
    Zhang L, He Q, Jiang W L, Li C J and Sun Y, Chin. Phys. Lett. 25, 734 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    Kessler F and Rudmann D, Sol. Energy 77, 685 (2004).ADSCrossRefGoogle Scholar
  7. [7]
    Shafarman W N and Zhu J, Thin Solid Films 361, 473 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    Marion S and Uwe R, Thin Solid Films 387, 141 (2001).CrossRefGoogle Scholar
  9. [9]
    Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M and Kunioka A, Sol. Energy Mater. Sol. Cells 49, 285 (1997).CrossRefGoogle Scholar
  10. [10]
    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J and Guha S, Prog. Photovolt.:Res. Appl. 21, 72 (2013).CrossRefGoogle Scholar
  11. [11]
    Lyahovitskakaya V, J. Appl. Phys. 91, 4205 (2002).ADSCrossRefGoogle Scholar
  12. [12]
    Probst V, Karg F, Rimmasch J, Riedl W, Stetter W, Harms H and Eibl O, MRS Proc. 426, 165 (1996).CrossRefGoogle Scholar
  13. [13]
    Pauw L J, Philips Res. Rep. 13, 1 (1985).Google Scholar
  14. [14]
    Li J V, Kuciauskas D, Young M R and Repins I L, Appl. Phys. Lett. 102, 163905 (2013).ADSCrossRefGoogle Scholar
  15. [15]
    Zhou H P, Song T B, Hsu W C, Luo S, Ye S L, Duan H S, Hsu C J, Yang W B and Yang Y, J. Am. Chem. Soc. 135, 15998 (2013).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ding Sun (孙顶)
    • 1
    • 2
    • 3
    Email author
  • Yu-li Li (李玉丽)
    • 1
  • Yu-hong Zhang (张玉红)
    • 1
  • Xiu-juan Guo (郭秀娟)
    • 1
  • Li Zhang (张力)
    • 2
  • Li-xin Zhang (张立新)
    • 3
  • Xiao-dan Zhang (张晓丹)
    • 2
  1. 1.School of Electrical and Computer EngineeringJilin Jianzhu UniversityChangchunChina
  2. 2.Institute of Photo Electronics Thin Film Devices and TechnologyNankai UniversityTianjinChina
  3. 3.School of PhysicsNankai UniversityTianjinChina

Personalised recommendations