Advertisement

Optoelectronics Letters

, Volume 15, Issue 2, pp 139–143 | Cite as

VCSEL-based Raman technology for extended reach time and reference frequency transfer systems

  • G. M. IsoeEmail author
  • E. K. Rotich
  • T. B. Gibbon
Article
  • 5 Downloads

Abstract

This paper experimentally demonstrates a low-cost energy efficient alternative technique for long reach transfer of accurate reference frequency (RF) clock signals for extended reach RF distribution systems. This is achieved by adopting distributed forward Raman amplification and vertical cavity surface emitting laser (VCSEL) technology. A class 10G VCSEL is directly modulated with a 2 GHz RF clock signal. By exploiting a forward Raman pump with the flat gain of 8.6 dB, a 100.8-km-long standard single mode fiber (SMF) RF clock distribution is experimentally achieved. A maximum phase noise of −117.66 dBc/Hz at offset frequency of 100 kHz and an RF clock jitter (RMS) of 5.36 ps is experimentally measured for 100.8-km-long fiber transmission without forward Raman amplification. However, with the adoption of forward Raman amplification, the measured phase noise and RMS improves to −86.59 dBc/Hz and 1.7 ps, respectively. Forward Raman pumping offers distributed high flat gain over a wide spectra range (over 35.5 nm), while VCSELs offer cost effective broadband signal distribution, therefore keeping the network optics investment low.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Zhou, C. Yu, G. Mohan and H. Kim, Journal of Lightwave Technology 34, 3790 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    Y. Shao, F. Chen, A. Wang, Y. Luo and L. Chen, Optik — International Journal for Light and Electron Optics 146, 63 (2017).CrossRefGoogle Scholar
  3. [3]
    G. M. Isoe, S. Wassin, R. R. G. Gamatham, A. W. R. Leitch and T. B. Gibbon, Journal of Modern Optics 64, 2336 (2017).ADSCrossRefGoogle Scholar
  4. [4]
    J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan and F. Tang, Journal of Lightwave Technology 33, 727 (2015).ADSCrossRefGoogle Scholar
  5. [5]
    R. Szweda, III-Vs Review 19, 32 (2006).Google Scholar
  6. [6]
    R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer, 2012.Google Scholar
  7. [7]
    A. Caballero, N. Guerrero, F. Amaya, F. Amaya, D. Zibar and I. T. Monroy, Long Reach and Enhanced Power Budget DWDM Radio-Over-Fibre Link Supported by Raman Amplification and Coherent Detection, 35th European Conference on Optical Communication, 2009.Google Scholar
  8. [8]
    S. Li, C. Wang, H. Lu and J. Zhao, IEEE Photonics Journal 9, 7202608 (2017).Google Scholar
  9. [9]
    A. S. Gupta, A. K. Hanjura and B. S. Mathur, Proceedings of the IEEE 79, 973 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    J. Jespersen, Survey of Time and Frequency Dissemination Techniques. 24th Annual Symposium on Frequency Control, 1970.CrossRefGoogle Scholar
  11. [11]
    G. M. Isoe, S. Wassin, R. R. G. Gamatham, A. W. R. Leitch and T. B. Gibbon, Proc. SPIE 10129, Optical Metro Networks and Short-Haul Systems IX, 101290F (2017).Google Scholar
  12. [12]
    G. Isoe, K. Muguro, D. Waswa, D. Osiemo, E. Kirui and H. Cherutoi, Forward Raman Amplification Characterization in Optical Networks, Sustainable Research and Innovation Conference, 251 (2014).Google Scholar
  13. [13]
    G. M. Isoe, K. M. Muguro, D. W. Waswa, E. K. R. Kipnoo, T. B. Gibbon and A. W. R. Leitch, Effects of Double Rayleigh Scattering in Fibre Raman Amplifier at Different Pump Configurations, Southern African Telecommunication Networks and Application Conference, 2013.Google Scholar
  14. [14]
    G. M. Isoe, K. M. Muguro, D. W. Waswa, E. K. R. Kipnoo, T. B. Gibbon and A. W. R. Leitch, Performance Comparison of SMF-Reach and SMF-RS Optical Fibres for Raman Amplification, 59th South African Institute of Physics, 2014.Google Scholar
  15. [15]
    G. M. Isoe, E. K. Rotich, D. K. Boiyo, R. R. G. Gamatham, A. W. R. Leitch, T. B. Gibbon, K. M. Muguro and D. W. Waswa, Noise Figure and Pump Reflection Power in SMF-Reach Optical Fibre for Raman Amplification, AFRICON, 1 (2015).Google Scholar
  16. [16]
    I. G. s. E. S. T. Force. (15/09/2017). IEEE Standard 802.3.bm. https://doi.org/www.ieee802.org/3/bm/index Google Scholar
  17. [17]
    B. Zhu, L. Leng, L. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, Shu Namiki, P. Gaarde, A. Judy, B. Palsdottir and R. L. Lingle Jr., 3.2 Tb/s (80×42.7 Gb/s) Transmission over 20×100km of Non-Zero Dispersion Fiber with Simultaneous C+ L-Band Dispersion Compensation, Optical Fiber Communication Conference, FC8 (2002).Google Scholar
  18. [18]
    W. S. Pelouch, Journal of Lightwave Technology 34, 6 (2016).ADSCrossRefGoogle Scholar
  19. [19]
    J. Bromage, Journal of Lightwave Technology 22, 79 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Broadband CommunicationNelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations