Optoelectronics Letters

, Volume 15, Issue 2, pp 81–84 | Cite as

Ultraviolet photodetector based on Au doped TiO2 nanowires array with low dark current

  • Min Zhang (张敏)Email author
  • Kamale Tuokedaerhan (卡马勒•托克达尔汗)
  • Hong-yan Zhang (张红燕)
  • Lin Li (李琳)


Au nanoparticles doped TiO2 nanowires (NWs) arrays with an average diameter of 100 nm were synthesized through a facile solvothermal method. Thereafter, metal/semiconductor/metal (MSM) structured detectors with Ag electrodes were fabricated on these NWs. The ultraviolet (UV) sensing characteristics of pure TiO2 and Au-doped ones (Au-TiO2) were investigated. Compared with pure TiO2, the Au-TiO2 NWs based device shows a much lower dark current of 1.5 nA at 3 V bias. The low dark current mechanism might be due to the promoted directional transmission of carriers induced by Au doping. The photoresponse is nearly one order of magnitude under 360 nm monochromatic illumination. The Au-TiO2 NWs detector with simple fabrication process, low noise and good overall performance provides a broad way in fabricating UV imaging arrays.

Document code


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Hu, F. Teng, H. Chen, M. Jiang, Y. Gu, H. Lu, L. Hu and X. Fang, Advanced Functional Materials 27, 1704477 (2017).CrossRefGoogle Scholar
  2. [2]
    Y. Zeng, X. Pan, B. Lu and Z. Ye, RSC Advances 6, 31316 (2016).CrossRefGoogle Scholar
  3. [3]
    W. Wang, Y. Zheng, X. Li, Y. Li, L. Huang and G. Li, Journal of Materials Chemistry C 6, 3417 (2018).CrossRefGoogle Scholar
  4. [4]
    D. Zhang, C. Liu, B. Yin, R. Xu, J. Zhou, X. Zhang and S. Ruan, Nanoscale 9, 9095 (2017).CrossRefGoogle Scholar
  5. [5]
    L. Wang, L. Chang, X. Yin, L. You, J. Zhao, H. Guo, K. Jin, K. Ibrahim, J. Wang, A. Rusydi and J. Wang, Applied Physics Letters 110, 043504 (2017).ADSCrossRefGoogle Scholar
  6. [6]
    B. Guo, G. Wu, H. Chen and M. Wang, Organic Electronics 29, 13 (2016).CrossRefGoogle Scholar
  7. [7]
    S. Wei, R. Wu, J. Jian, F. Chen and Y. Sun, Dalton Transactions 44, 1534 (2015).CrossRefGoogle Scholar
  8. [8]
    A. Patrocinio, L. Paterno and N. Iha, Journal of Materials Chemistry C 114, 17954 (2015).Google Scholar
  9. [9]
    M. Liu, C. Wang and N. Kim, Sensors 17, 284 (2017).CrossRefGoogle Scholar
  10. [10]
    H. Zhang, S. Ruan, H. Li, M. Zhang, K. Lv, C. Feng and W. Chen, IEEE Electron Device Letters 33, 83 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Li, S. Cao, A. Zhang, C. Zhang, T. Qu, Y. Zhao and A. Chen, Applied Surface Science 445, 350 (2018).ADSCrossRefGoogle Scholar
  12. [12]
    O. Lupan, V. Cretu, V. Postica, M. Ahmadi, B. Cuenya, L. Chow, I. Tiginyanu, B. Viana, T. Pauporté and R. Adelung, Sensors and Actuators B 223, 893 (2016).CrossRefGoogle Scholar
  13. [13]
    C. Feng, W. Li, C. Li, L. Zhu, H. Zhang, Y. Zhang, S. Ruan, W. Chen and L. Yu, Sensors and Actuators B 166–167, 83 (2012).CrossRefGoogle Scholar
  14. [14]
    H. Zhang, M. Zhang, C. Lin and J. Zhang, Sensors 18, 218 (2018).CrossRefGoogle Scholar
  15. [15]
    V. Bukhtiyarov, A. Nizovskii, H. Bluhm, M. Hävecker, E. Kleimenov, A. Knop-Gericke and R. Schlögl, Journal of Catalysis 238, 260 (2006).CrossRefGoogle Scholar
  16. [16]
    J. Szuber, G. Czempik, R. Larciprete, D. Koziej and B. Adamowicz, Thin Solid Films 391, 198 (2001).ADSCrossRefGoogle Scholar
  17. [17]
    H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou and W. Chen, Applied Physics Letters 90, 201118 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    S. Yuan, Z. Pei, H. Lai, C. Chen, P. Li and Y. Chan, IEEE Electron Device Letters 36, 1186 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Min Zhang (张敏)
    • 1
    Email author
  • Kamale Tuokedaerhan (卡马勒•托克达尔汗)
    • 1
  • Hong-yan Zhang (张红燕)
    • 1
  • Lin Li (李琳)
    • 1
  1. 1.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina

Personalised recommendations