Optoelectronics Letters

, Volume 14, Issue 6, pp 438–441 | Cite as

Multicast-enabled high-speed VCSEL technology for flexible data center networks

  • G. M. Isoe
  • S. Wassin
  • T. B. Gibbon


We experimentally demonstrate the multiple signal modulation on a single class 10 G vertical cavity surface emitting laser (VCSEL) carrier at 1 310 nm for next generation multicast-enabled data center networks. A 10 Gbit/s data signal is directly modulated onto a single mode VCSEL carrier. To maximize carrier spectral efficiency, a 2 GHz reference frequency (RF) clock tone is simultaneously modulated on the VCSEL phase attribute. The inherent VCSEL orthogonal polarization bistability with changing bias current is further exploited in transmission of a polarization based pulse per second (PPS) timing clock signal. Therefore, we simultaneously transmit a 10 Gbit/s directly modulated data, 2 GHz phase modulated RF and a polarization- based PPS clock signals using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time that a single class 10 G VCSEL carrier is reported to transmit a directly modulated data, phase modulated RF clock and polarization based PPS timing signal simultaneously in a single wavelength. A of G.652 single mode fibre (SMF) transmission over 3.21 km is experimentally attained. A receiver sensitivity of −15.60 dBm is experimentally obtained for the directly modulated 10 Gbit/s data signal. A 3.21-km-long SMF transmission introduces a penalty of 0.23 dB to the data signal. The contribution of a 2 GHz phase modulated RF and a polarization-based PPS clock signal to this penalty is found to be 0.03 dB. An RF single- side band (SSB) phase noise values of −82.36 dBc/Hz and −77.97 dBc/Hz are attained without and with simultaneous directly modulated data and polarization-based PPS clock signals respectively for a 3.21-km-long SMF transmission. This work provides an alternative efficient and cost effective technique for simultaneous high-speed multiple information transmission to different network nodes within a data center network through shared network infrastructure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman and K. Bergman, Optics Express 23, 22162 (2015).ADSCrossRefGoogle Scholar
  2. [2]
    K. Tokas, C. Spatharakis, I. Kanakis, N. Iliadis, P. Bakopoulos, H. Avramopoulos, I. Patronas, N. Liakopoulos and D. Reisis, A Scalable Optically–Switched Datacenter Network with Multicasting, European Conference on Networks and Communications, 265 (2016).CrossRefGoogle Scholar
  3. [3]
    B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd and M. Luby, Reliable Multicast Transport Building Blocks for One–to–Many Bulk–Data Transfer, doi:10.17487/rfc3048, 2001.CrossRefGoogle Scholar
  4. [4]
    Z. Guo, J. Duan and Y. Yang, IEEE Journal on Selected Areas in Communications 32, 102 (2014).CrossRefGoogle Scholar
  5. [5]
    D. Li, Y. Li, J. Wu, S. Su and J. Yu, IEEE/ACM Transactions on Networking 20, 944 (2012).CrossRefGoogle Scholar
  6. [6]
    W.–K. Jia, IEEE Journal on Selected Areas in Communications 32, 116 (2014).CrossRefGoogle Scholar
  7. [7]
    G. M. Isoe, E. K. Rotich, R. R. G. Gamatham, A. W. R. Leitch and T. B. Gibbon, Fibre–to–the–Hut Technology: A Solution for Cheap Access for High Speed–Optical Network in South Africa, SAIP Proceeding, 440 (2015).Google Scholar
  8. [8]
    T. B. Gibbon, K. Prince, C. Neumeyr, E. Rönneberg, M. Ortsiefer and I. T. Monroy, 10Gb/s 1550 nm VCSEL transmission over 23.6 km SMF with no Dispersion Compensation and no Injection Locking for WDM PONs, National Fiber Optic Engineers Conference, JThA30 (2010).Google Scholar
  9. [9]
    T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer and I. Tafur Monroy, Optical Fiber Technology 17, 41 (2011).ADSCrossRefGoogle Scholar
  10. [10]
    K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer and I. Tafur Monroy, Journal of Optical Communications and Networking 3, 399 (2011).CrossRefGoogle Scholar
  11. [11]
    G. M. Isoe, S. Wassin, R. R. G. Gamatham, A. W. R. Leitch and T. B. Gibbon, Simultaneous 10 Gbps Data and Polarization–Based Pulse–Per–Second Clock Transmission Using a Single VCSEL for High–Speed Optical Fibre Access Networks, 101290F (2017).Google Scholar
  12. [12]
    S. Inc., FS725 Rubidium Frequency Standard Operation and Service Manual, Version 1.3, Sunnyvale, California 94089: Stanford Research Systems, 2015.Google Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Broadband CommunicationNelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations