Advertisement

Optoelectronics Letters

, Volume 14, Issue 5, pp 363–366 | Cite as

The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

  • Yang Liu (刘杨)
  • Wei Liu (刘玮)
  • Meng-Xin Chen (陈梦馨)
  • Si-Han Shi (史思涵)
  • Zhi-Chao He (何志超)
  • Jin-Long Gong (巩金龙)
  • Tuo Wang (王拓)
  • Zhi-Qiang Zhou (周志强)
  • Fang-Fang Liu (刘芳芳)
  • Yun Sun (孙云)
  • Shu Xu (徐术)
Article
  • 36 Downloads

Abstract

With reducing the absorber layer thickness and processing temperature, the recombination at the back interface is severe, which both can result in the decrease of open-circuit voltage and fill factor. In this paper, we prepare Al2O3 by atomic layer deposition (ALD), and investigate the effect of its thickness on the performance of Cu(In,Ga)Se2 (CIGS) solar cell. The device recombination activation energy (EA) is increased from 1.04 eV to 1.11 eV when the thickness of Al2O3 is varied from 0 nm to 1 nm, and the height of back barrier is decreased from 48.54 meV to 38.05 meV. An efficiency of 11.57 % is achieved with 0.88-μm-thick CIGS absorber layer.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, https://doi.org/www.solar-frontier.com/eng/news/2017/1220_press.html.
  2. [2]
    M. Gloeckler and J.R. Sites, J. Appl. Phys. 98, 103703 (2005).ADSCrossRefGoogle Scholar
  3. [3]
    N. Amin, P. Chelvanathan, M.I. Hossain and K. Sopian, Energy Procedia. 15, 291(2012).CrossRefGoogle Scholar
  4. [4]
    P. Reinhard, F. Pianezzi, L. Kranz, S. Nishiwaki, A. Chirila, S. Buecheler and A.N. Tiwati, Prog. Photovolt: Res. Appl. 23, 281 (2015).CrossRefGoogle Scholar
  5. [5]
    E. Jarzembowski, B. Fuhrmann, H. Leipner, W. Franzel and R. Scheer, Thin Solid Films 633, 61 (2017).ADSCrossRefGoogle Scholar
  6. [6]
    E. Jarzembowski, F. Syrowatka, K. Kaufmann, W. Franzel, T. Holscher and R. Scheer, Appl. Phys. Lett. 107, 051601 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    J.H. Yoon, J.H. Kim, W.M. Kim, J.K. Park, Y.J. Baik, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 22, 90 (2014).CrossRefGoogle Scholar
  8. [8]
    R. Caballero, M. Nichterwitz, A. Steigert, A. Eicke, I. Lauermann, H.W. Schock and C.A. Kaufmann, Acta Mater. 63, 54 (2014).CrossRefGoogle Scholar
  9. [9]
    X.L. Zhu, Z. Zhou, Y.M. Wang, L. Zhang, A.M. Li and F.Q. Huang, Sol. Energy Mater. Sol. Cells 101, 57 (2012).CrossRefGoogle Scholar
  10. [10]
    J.H. Yoon, W.M. Kim, J.K. Park, Y.J. Baik, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 22, 69 (2014).CrossRefGoogle Scholar
  11. [11]
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, Phys. Status Solidi (RRL)-Rapid Res. Lett. 10, 583 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    J.H. Yoon, T.Y. Seong and J.H. Jeong, Prog. Photovolt: Res. Appl. 21, 58 (2013).CrossRefGoogle Scholar
  13. [13]
    K. Granath, M. Bodegard and L. Stolt. Huang, Sol. Energy Mater. Sol. Cells 60, 279 (2000).CrossRefGoogle Scholar
  14. [14]
    J. Joel, B. Vermang, J. Larsen, O.D. Gargand and M. Edoff, Phys. Status Solidi RRL 9, 288 (2015).CrossRefGoogle Scholar
  15. [15]
    B. Vermang, J.T. Watigen, V. Fjallstrom, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry and D. Flandre, Prog. Photovolt: Res. Appl. 22, 1023 (2014).CrossRefGoogle Scholar
  16. [16]
    V. Nadenau, U. Rau, A. Jasenek and H.W. Schock, J. Appl. Phys. 87, 584 (2000).ADSCrossRefGoogle Scholar
  17. [17]
    T. Mise, S. Tajima, T. Fukano, K. Higuchi, T. Wasgio, K. Jimbo and H. Katagiri, Prog. Photovolt: Res. Appl. 24, 1009 (2016).CrossRefGoogle Scholar
  18. [18]
    S.S. Hegedus and W.N. Shafarman, Prog. Photovolt: Res. Appl. 12, 155 (2004).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Liu (刘杨)
    • 1
  • Wei Liu (刘玮)
    • 1
  • Meng-Xin Chen (陈梦馨)
    • 2
  • Si-Han Shi (史思涵)
    • 1
  • Zhi-Chao He (何志超)
    • 1
  • Jin-Long Gong (巩金龙)
    • 2
  • Tuo Wang (王拓)
    • 2
  • Zhi-Qiang Zhou (周志强)
    • 1
  • Fang-Fang Liu (刘芳芳)
    • 1
  • Yun Sun (孙云)
    • 1
  • Shu Xu (徐术)
    • 3
  1. 1.Tianjin Key Laboratory of Thin Film Devices and Technology, Institute of Photoelectronic Thin Film Devices and TechnologyNankai UniversityTianjinChina
  2. 2.Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  3. 3.Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations