Advertisement

Optoelectronics Letters

, Volume 14, Issue 5, pp 359–362 | Cite as

Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3

  • Fei-fei Xin (辛非非)
Article
  • 21 Downloads

Abstract

The UV photorefractive properties of near-stoichiometric LiNbO3 single crystal are found to be significantly enhanced compared with the congruent one at 325 nm. The temperature dependence of the band edge of near-stoichiometric LiNbO3 crystal is investigated. Significant thermal-induced spectral shift in band gap which obeys the Bose-Einstein expression is observed, and the fundamental band gap at zero absolute temperature is found to be much larger than the congruent one. New absorption bands near the UV band edge which are much stronger in the near-stoichiometric LiNbO3 than those in the congruent LiNbO3 crystal show up at temperatures lower than ∼400 K. Note that the UV photorefractivity is enhanced in SLN, which has exactly the same tendency as the absorption strength.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer-Verlag, Berlin, 2008.CrossRefGoogle Scholar
  2. [2]
    B. Tian, H. Chen, D. Choge, Y. Xu, G. Li and W. Liang, Optoelectron. Lett. 13, 206 (2017).ADSCrossRefGoogle Scholar
  3. [3]
    W. Wu, J. Ma, H. Pan, E. Wu, H. Chen, K. Dismas and W. Liang, Optoelectron. Lett. 13, 156 (2017).ADSCrossRefGoogle Scholar
  4. [4]
    S. Pal, B. Das and S. Wolfgang, Appl. Phys. B 120, 737 (2015).ADSCrossRefGoogle Scholar
  5. [5]
    D. Zheng, Y. Kong, S. Liu, M. Chen, S. Chen, L. Zhang, R. Rupp and J. Xu, Sci. Rep. 6, 20308 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    D. Zheng, Y. Kong, S. Liu, J. Yao, L. Zhang, S. Chen and J. Xu, AIP Adv. 1, 031501 (2015).Google Scholar
  7. [7]
    J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang and J. Xu, Opt. Express 24, 21869 (2016).ADSCrossRefGoogle Scholar
  8. [8]
    X. Chen, B. Li, J. Xu, D. Zhu, S. Pan and Zh. Wu, J. Appl. Phys. 90, 1516 (2001).ADSCrossRefGoogle Scholar
  9. [9]
    F. Xin, G. Zhang, F. Bo, H. Sun, Y. Kong, J. Xu, T. Volk and N. Rubinina, J. Appl. Phys. 107, 033113 (2010).ADSCrossRefGoogle Scholar
  10. [10]
    L. Viña, S. Logothetidis and M. Cardona, Phys. Rev. B 30, 1979 (1984).ADSCrossRefGoogle Scholar
  11. [11]
    J. Castillo-Torres, Opt. Commun. 290, 107 (2013).ADSCrossRefGoogle Scholar
  12. [12]
    G. D. Cody, T. Tiedje, B. Abeles, B. Brooks and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).ADSCrossRefGoogle Scholar
  13. [13]
    J. D. Dow and D. Redfield, Phys. Rev. B 5, 594 (1972).ADSCrossRefGoogle Scholar
  14. [14]
    F. Xin, Z. Zhai, X. Wang, Y. Kong, J. Xu and G. Zhang, Phys. Rev. B 86, 165132 (2012).ADSCrossRefGoogle Scholar
  15. [15]
    P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau and E. Krätzig, Phys. Rev. Lett. 95, 067404 (2005).ADSCrossRefGoogle Scholar
  16. [16]
    C. Merschjann, B. Schoke and M. Imlau, Phys. Rev. B 76, 085114 (2007).ADSCrossRefGoogle Scholar
  17. [17]
    D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau and Th. Woike, J. Appl. Phys. 87, 1034 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Materials ScienceTianjin Normal UniversityTianjinChina

Personalised recommendations