Advertisement

Optoelectronics Letters

, Volume 13, Issue 5, pp 325–329 | Cite as

Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

  • Zhen Wang (王振)
  • Xin Zheng (郑新)
  • Fei Liu (柳菲)
  • Pei Wang (王培)
  • Lin Gan (甘林)
  • Jing-jing Wang (汪静静)
Article

Abstract

Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kido J, Matsumoto T, Nakada T, Endo J, Mori K, Kawamura N and Yokoi A, SID International Symposium Digest of Technical Papers 34, 964 (2003).CrossRefGoogle Scholar
  2. [2]
    Wu Y, Sun Y, Qin H, Hu S, Wu S and Zhao Y, Applied Physics A: Materials Science & Processing 123, 234 (2017).ADSCrossRefGoogle Scholar
  3. [3]
    Cho J T, Kim D H, Koh E I and Kim T W, Thin Solid Films 570, 63 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    Kwak T H and Ju S H, J. Kor. Inst. Surf. Eng. 47, 210 (2014).CrossRefGoogle Scholar
  5. [5]
    Wu Y, Sun Y, Qin H, Hu S, Wu Q and Zhao Y, Synthetic Metals 228, 45 (2017).CrossRefGoogle Scholar
  6. [6]
    Liu Y, Wu X, Xiao Z, Gao J, Zhang J, Rui H, Lin X, Zhang N, Hua Y and Yin S, Applied Surface Science 413, 302 (2017).ADSCrossRefGoogle Scholar
  7. [7]
    Yang J, Suman C K, Kim J, Song W J, Wooh S, Char K and Lee C, Journal of Nanoscience and Nanotechnology 14, 5898 (2014).CrossRefGoogle Scholar
  8. [8]
    Gao X D, Zhou J, Xie Z T, Ding B F, Qian Y C, Ding X M and Hou X Y, Applied Physics Letters 93, 314 (2008).Google Scholar
  9. [9]
    Lai S L, Chan M Y, Fung M K, Lee C S and Lee S T, Journal of Applied Physics 101, 139 (2007).Google Scholar
  10. [10]
    Law C W, Lau K M, Fung M K, Chan M Y, Wong F L, Lee C S and Lee S T, Applied Physics Letters 89, 133511 (2006).ADSCrossRefGoogle Scholar
  11. [11]
    Wu Cong-ling, Chen Liu-qing, Jing Shu, Miao Yan-qin, Liu Hui-hui, Bai Qing-yun, Yang Jun-li, Li Yuan-hao, Li Wan-li and Wang hua, Chinese Journal of Luminescence 36, 679 (2015).CrossRefGoogle Scholar
  12. [12]
    Rao M V M, Huang T S, Su Y K, Huang Y T and Huang C Y, Journal of the Electrochemical Society 157, H69 (2010).CrossRefGoogle Scholar
  13. [13]
    Liu X, Wang C, Wang C, Irfan I and Gao Y, Organic Electronics 17, 325 (2015).CrossRefGoogle Scholar
  14. [14]
    Kleemann H, Gutierrez R, Avdoshenko S, Cunibert G, Leo K and Lüssem B, Organic Electronics 14, 193 (2013).CrossRefGoogle Scholar
  15. [15]
    Smerdon J A, Giebink N C, Guisinger N P, Darancet P and Guest J R, Nano Letters 16, 2603 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    Zou Y, Mao H, Meng Q and Zhu D, Journal of Chemical Physics 144, 605 (2016).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhen Wang (王振)
    • 1
  • Xin Zheng (郑新)
    • 1
  • Fei Liu (柳菲)
    • 1
  • Pei Wang (王培)
    • 1
  • Lin Gan (甘林)
    • 1
  • Jing-jing Wang (汪静静)
    • 1
  1. 1.College of Optoelectronic EngineeringChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations