Optoelectronics Letters

, Volume 11, Issue 2, pp 157–160 | Cite as

Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering

  • Lan Su (苏蓝)
  • Ping Zhang (张萍)
  • Da-wei Zheng (郑大威)
  • Yang-jun-qi Wang (汪杨俊琦)
  • Ru-gang Zhong (钟儒刚)
Article

Abstract

In this paper, the surface-enhanced Raman scattering (SERS) is used as an analytical tool for the detection and identification of pathogenic bacteria of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). Compared with normal Raman signal, the intensity of SERS signal is greatly enhanced. After processing all SERS data, the obvious differences between the SERS spectra of two species are determined. And applying the chemometric tools of principal component analysis and hierarchical cluster analysis (PCA-HCA), the SERS spectra of two species are distinguished more accurately. The results indicate that SERS analysis can provide a rapid and sensitive method for the detection of pathogenic bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Efrima and L. Zeiri, Journal of Raman Spectroscopy 40, 277 (2009).CrossRefADSGoogle Scholar
  2. [2]
    L. Zhang, J. J. Xua, L. Mi, H. Gong, S. Jiang and Q. Yu, Biosensors and Bioelectronics 31, 130 (2012).CrossRefGoogle Scholar
  3. [3]
    J. Gao, L. Guo, J. F. Wu, J. L. Feng, S. M. Wang, F. L. Lai, J. W. Xie and Z. Q. Tian, Journal of Raman Spectroscopy 45, 619 (2014).CrossRefADSGoogle Scholar
  4. [4]
    I. S. Patel, W. R. Premasiri, D. T. Moir and L. D. Ziegler, Journal of Raman Spectroscopy 39, 1660 (2008).CrossRefADSGoogle Scholar
  5. [5]
    A. H. Deng, Z. P. Sun and G. Q. Zhang, Laser Physics Letters 9, 636 (2012).CrossRefADSGoogle Scholar
  6. [6]
    P. C. Lee and D. Meisel, Journal of Agricultural and Food Chemistry 86, 3391 (1982).Google Scholar
  7. [7]
    K. E. Stephen, D. Homrighausen, G. DePalma, C. H. Nakatsu and J. Irudayaraj, Analyst 137, 4280 (2012).CrossRefADSGoogle Scholar
  8. [8]
    T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang and C. H. Lin, PLos One 4, 1 (2009).CrossRefMATHGoogle Scholar
  9. [9]
    W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones and L. D. Ziegler, The Journal of Physical Chemistry B 109, 312 (2005).CrossRefGoogle Scholar
  10. [10]
    A. Sivanesan, E. Witkowska, W. Adamkiewicz, L. Dziewit, A. Kamińska and J. Waluk, Analyst 139, 1037 (2014).CrossRefADSGoogle Scholar
  11. [11]
    E. Vinogradova, A. Tlahuice-Flores, J. J. Velazquez-Salazar, E. Larios-Rodriguez and M. Jose-Yacaman, Journal of Raman Spectroscopy 45, 730 (2014).CrossRefGoogle Scholar
  12. [12]
    U. Neugebauer, J. H. Clement, T. Bocklitz, C. Krafft and J. Popp, Journal of Biophotonics 3, 579 (2010).CrossRefGoogle Scholar
  13. [13]
    D. P. Cowcher, Y. Xu and R. Goodacre, Analytical Chemistry 85, 3297 (2013).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lan Su (苏蓝)
    • 1
  • Ping Zhang (张萍)
    • 1
  • Da-wei Zheng (郑大威)
    • 1
  • Yang-jun-qi Wang (汪杨俊琦)
    • 1
  • Ru-gang Zhong (钟儒刚)
    • 1
  1. 1.College of Life Science and BioengineeringBeijing University of TechnologyBeijingChina

Personalised recommendations