Optoelectronics Letters

, Volume 10, Issue 4, pp 258–261 | Cite as

Study of dual-blue light-emitting diodes with asymmetric AlGaN graded barriers

  • Qi-rong Yan (严启荣)
  • Yong Zhang (章勇)
  • Jun-zheng Li (李军政)


A dual-blue light-emitting diode (LED) with asymmetric AlGaN composition-graded barriers but without an AlGaN electron blocking layer (EBL) is analyzed numerically. Its spectral stability and efficiency droop are improved compared with those of the conventional InGaN/GaN quantum well (QW) dual-blue LEDs based on stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate. The improvement can be attributed to the markedly enhanced injection of holes into the dual-blue active regions and effective reduction of leakage current.


Quantum Well Apply Physic Letter White Lead Quantum Well Structure Spectral Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    S. Pimputkar, J. S. Speck, S. P. Denbaars and S. Nakamura, Nature Photonics 3, 180 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska and M. S. Shur, Applied Physics Letters 80, 234 (2002).ADSCrossRefGoogle Scholar
  4. [4]
    M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek and Y. Park, Applied Physics Letters 91, 183507-1 (2007).ADSGoogle Scholar
  5. [5]
    Y. K. Kuo, S. H. Yen, M. C. Tsai and B. T. Liou, Proc. of SPIE 6669, 66691I-1 (2007).CrossRefGoogle Scholar
  6. [6]
    W. Lee, M. H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim and E. F. Schubert, Journal of Applied Physics 107, 063102-1 (2010).ADSGoogle Scholar
  7. [7]
    R. A. Arif, Y. K. Ee and N. Tansu, Applied Physics Letters 91, 091110-1 (2007).ADSCrossRefGoogle Scholar
  8. [8]
    J. Park and Y. Kawakami, Applied Physics Letters 88, 202107-1 (2006).ADSGoogle Scholar
  9. [9]
    S. H. Park, J. Park and E. Yoon, Applied Physics Letters 90, 023508-1 (2007).ADSGoogle Scholar
  10. [10]
    R. A. Arif, H. Zhao and N. Tansu, Applied Physics Letters 92, 011104-1 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    H. Zhao, G. Liu and N. Tansu, Applied Physics Letters 97, 131114-1 (2010).ADSGoogle Scholar
  12. [12]
    S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. R. Chen and J. M. Tsai, IEEE Journal of Selected Topics in Quantum Electron 8, 744 (2002).CrossRefGoogle Scholar
  13. [13]
    Y. A. Chang, J. Y. Chang, Y. T. Kuo and Y. K. Kuo, Applied Physics Letters 100, 251102-1 (2012).ADSGoogle Scholar
  14. [14]
    Q. R. Yan, Y. Zhang, S. T. Li, Q. A. Yan, P. P. Shi, Q. L. Niu, M. He, G. P. Li and J. R. Li, Optics Letters 37, 1556 (2012).ADSCrossRefGoogle Scholar
  15. [15]
    X. W. Chen, Y. Zhang, S. T. Li, Q. R. Yan, S. W. Zheng, M. He and G. H. Fan, Physica Status Solidi A 208, 1972 (2011).CrossRefGoogle Scholar
  16. [16]
    APSYS by Crosslight Software Inc. Burnaby Canada,
  17. [17]
    Y. K. Kuo, J. Y. Chang, M. C. Tsai and S. H. Yen, Applied Physics Letters 95, 011116-1 (2009).ADSGoogle Scholar
  18. [18]
    I. Vurgaftman and J. R. Meyer, Journal of Applied Physics 94, 3675 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qi-rong Yan (严启荣)
    • 1
  • Yong Zhang (章勇)
    • 2
  • Jun-zheng Li (李军政)
    • 3
  1. 1.Guangdong Vocational School of PolytechnicGuangzhouChina
  2. 2.Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and TechnologySouth China Normal UniversityGuangzhouChina
  3. 3.Foshan Nation Star Optoelectronics Co. Ltd.FoshanChina

Personalised recommendations