Advertisement

Optoelectronics Letters

, Volume 8, Issue 6, pp 422–425 | Cite as

Spectral spatial coherence of high-power multi-chip LEDs

  • Guang-ming Chen (陈光明)
  • Hua Tao (陶华)
  • Hui-chuan Lin (林恵川)
  • Zi-yang Chen (陈子阳)
  • Ji-xiong Pu (蒲继雄)Email author
Article
  • 92 Downloads

Abstract

We investigate the spatial coherence of the light generated from high-power multi-chip red LEDs by using the van Cittert-Zernike theorem. It is theoretically demonstrated that the light generated from multi-chip LEDs evolves into partially coherent light after propagation, and the spatial coherence is increased with the increase of propagation distance. Moreover, the spatial coherence of the light is found to be closely related to the chip distribution of multi-chip LEDs. The distribution of the spatial coherence of the light is experimentally examined by Young’s double-slit interference. It is found that the experimental results are consistent with the theoretical ones.

Keywords

Propagation Distance Interference Fringe Spatial Coherence Coherent Light Fringe Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. F. Schubert, Light-Emitting Diodes, Cambridge Univ. Press, UK, 2003.Google Scholar
  2. [2]
    D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron 8, 310 (2002).CrossRefGoogle Scholar
  3. [3]
    J. Kim, S. Somani and Y. Yamamoto, Nonclassical Light from Semiconductor Lasers and LEDs, Spinger, 2001.Google Scholar
  4. [4]
    S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    M. G. Craford, N. Holonyak and F. A. Kish, Sci. Am. 284, 63 (2001).CrossRefGoogle Scholar
  6. [6]
    Y. Narukawa, Opt. Photonics News 15, 24 (2004).CrossRefGoogle Scholar
  7. [7]
    A. Bergh, G. Craford, A. Duggal and R. Haiz, Phys. Today 54, 42 (2001).ADSCrossRefGoogle Scholar
  8. [8]
    I. Moreno, C-C. Sun and R. Ivanov, Appl. Opt. 48, 1190 (2009).ADSCrossRefGoogle Scholar
  9. [9]
    Z. Guo, Y. Gao, Y. Lu., Y. Lin, H. Chen, R. Lei, Y. Chen and Z. Chen, Journal of Optoelectronics Laser 22, 992 (2011). (in Chinese)Google Scholar
  10. [10]
    M. Peeters, G. Verschaffelt, H. Theinpont, S. K. Mandre, I. Fischer and M. Grabherr, Opt. Express 13, 9337 (2005).ADSCrossRefGoogle Scholar
  11. [11]
    M. Peeters, G. Verschaffelt, J. Speybrouck, H. Theinpont, J. Danckaert, J. Turunen and P. Vahimaa, Opt. Lett. 31, 1178 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    F. J. Duarte, L. S. Liao and K. M. Vaeth, Opt. Lett. 30, 3072 (2005).ADSCrossRefGoogle Scholar
  13. [13]
    F. J. Duarte, Opt. Lett. 32, 412 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    D. S. Mehta, K. Saxena, S. K. Dubey and C. Shakher, Journal of Luminescence 130, 96 (2010).ADSCrossRefGoogle Scholar
  15. [15]
    M. Born and E. Wolf, Principles of Optics, Cambridge Univ. Press, UK, 1999.Google Scholar
  16. [16]
    MENG Zhuo, LIANG Yu, YAO Xiao-tian, YAO Hui, LIU Tie-gen and WAN Mu-sen, Journal of Optoelectronics Laser 22, 256 (2011). (in Chinese)Google Scholar
  17. [17]
    Z. Chen, L. Hua and J. Pu, Prog. Opt. 57, 219 (2012).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guang-ming Chen (陈光明)
    • 1
    • 2
  • Hua Tao (陶华)
    • 1
  • Hui-chuan Lin (林恵川)
    • 1
  • Zi-yang Chen (陈子阳)
    • 1
  • Ji-xiong Pu (蒲继雄)
    • 1
    Email author
  1. 1.College of Information Science & EngineeringHuaqiao UniversityXiamenChina
  2. 2.Fujian Institute of EducationFuzhouChina

Personalised recommendations