Advertisement

Optoelectronics Letters

, Volume 6, Issue 3, pp 203–206 | Cite as

Characteristics of 45° photonic crystal ring resonators based on square-lattice silicon rods

  • Ji-bo Bai (白继博)
  • Jun-qin Wang (王君琴)
  • Xi-yao Chen (陈曦曜)
  • Jun-zhen Jiang (蒋俊贞)
  • Hui Li (李晖)
  • Yi-shen Qiu (邱怡申)
  • Ze-xuan Qiang (强则煊)Email author
Article

Abstract

A new photonic crystal ring resonator (PCRR) configuration is provided based on two-dimensional (2D) square lattice photonic crystal (PC) silicon rods. The ring is formed by removing the line defect along M direction instead of conventional ΓX direction. Its spectral information including transmission intensity, dropped efficiency and quality factor affected by different physical parameters and the cascaded engineering including parallel and serial configurations are numerically analyzed with 2D finite-difference time-domain (FDTD) technique. The spectral quality factor of more than 830 and dropped efficiency of 90% at 1550 nm channel can be obtained with a less than 2.2 μm ring radius.

Keywords

Photonic Crystal Ring Resonator Ring Radius Serial Configuration Coupling Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J E Bowers, S A Newton, W V Sorin and H J Shaw, Electron. Lett. 18, 110 (1982).CrossRefADSGoogle Scholar
  2. [2]
    C Y Chao, W Fung and L J Guo, IEEE J. Sel. Topics in Quantum Electron. 20, 134 (2006).CrossRefGoogle Scholar
  3. [3]
    Q Xu, S Manipatruni, B Schmidt, J Shakya and M Lipson, Opt. Express 15, 430 (2007).CrossRefADSGoogle Scholar
  4. [4]
    X Yan, C S Ma, C T Zheng, X Y Wang and D M Zhang, Optoelectron. Lett. 5, 81 (2009).CrossRefADSGoogle Scholar
  5. [5]
    J Renner, L Worschech, A Forchel, S Mahapatra and K Brunner, Appl. Phys. Lett. 93, 151109 (2008).CrossRefADSGoogle Scholar
  6. [6]
    L F Stokes, M Chodorow and H J Shaw, Opt. Lett. 7, 288 (1982).CrossRefADSGoogle Scholar
  7. [7]
    S Kim, J Cai, J Jiang and G Nordin, Opt. Express 12, 2356 (2004).CrossRefADSGoogle Scholar
  8. [8]
    V D Kumar, T Srinivas and A Selvarajan, Photonics and Nanostructures 2, 199 (2004).CrossRefADSGoogle Scholar
  9. [9]
    S H Jeong, J I Sugisaka, N Yamamoto, M Okano and K Komori, Jpn. J. Appl. Phys. 46, L534 (2007).CrossRefADSGoogle Scholar
  10. [10]
    D Zhao, C Zhou, Q Gong and X Jiang, J. Phys. D: Appl. Phys. 41, 115108 (2008).CrossRefGoogle Scholar
  11. [11]
    X P Shen, K Han, F Yuan, H P Li, Z Y Wang and Q Zhong, Chin. Phys. Lett. 25, 4288 (2008).CrossRefADSGoogle Scholar
  12. [12]
    Z Qiang, W Zhou and R A Soref, Opt. Express 15, 1823 (2007).CrossRefADSGoogle Scholar
  13. [13]
    Z Qiang, W Zhou, R A Soref and Z Ma, J. Nanophotonics 2, 023507 (2008).CrossRefGoogle Scholar
  14. [14]
    W Y Chiu, T W Huang, Y H Wu, Y J Chan, C H Hou, H T Chien and C C Chen, Opt. Express 15, 15500 (2007).CrossRefADSGoogle Scholar
  15. [15]
    K Ogusu and K Takayama, Opt. Express 16, 7525 (2008).CrossRefADSGoogle Scholar
  16. [16]
    P Andalib and N Granpayeh, J. Opt. Soc. Am. B 26, 10 (2009).CrossRefADSGoogle Scholar
  17. [17]
  18. [18]
    S Fan, P R Villeneuve and J D Joannopoulos, Opt. Express 3, 4 (1998).CrossRefADSGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ji-bo Bai (白继博)
    • 1
  • Jun-qin Wang (王君琴)
    • 2
  • Xi-yao Chen (陈曦曜)
    • 3
  • Jun-zhen Jiang (蒋俊贞)
    • 1
  • Hui Li (李晖)
    • 1
  • Yi-shen Qiu (邱怡申)
    • 1
  • Ze-xuan Qiang (强则煊)
    • 1
    Email author
  1. 1.School of Physics and Optoelectronics TechnologyFujian Normal UniversityFuzhouChina
  2. 2.College of Chemistry and Material ScienceFujian Normal UniversityFuzhouChina
  3. 3.Department of Physics and Electronic Information EngineeringMinjiang UniversityFuzhouChina

Personalised recommendations