Clinical Research in Cardiology Supplements

, Volume 3, Issue 1, pp 48–57

Analyse des kardiovaskulären Risikos mittels Kardio-CT und Koronarkalkbestimmung

Article
  • 9 Downloads

Zusammenfassung

Die koronare Herzkrankheit manifestiert sich häufig durch ein akutes Koronarsyndrom als Indexereignis. Vor dem Hintergrund der Entwicklung von Adipositas und Diabeteshäufigkeit fällt die Inzidenzrate der Erkrankung nicht weiter ab und wird möglicherweise sogar wieder ansteigen. Angesichts der hohen Letalität des akuten Myokardinfarkts in der Prähospitalphase kommt die medizinische Versorgung für viele Patienten zu spät. Die Koronarkalkbestimmung kann eine wichtige Hilfe zur Identifizierung asymptomatischer Personen mit erhöhtem Koronarrisiko und zur Einleitung einer Behandlung zur Risikoreduktion sein.

Koronarkalk ist ein weitgehend spezifischer Ausdruck der koronaren Atherosklerose und korreliert mit dem koronaren Gesamtplaquevolumen. Aufgrund der komplexen Gefäßwandbiologie mit kompensatorischem Remodeling zeigt Koronarkalk nicht notwendigerweise eine signifikante Stenosierung an. Eine Vielzahl unabhängiger Studien in Kollektiven mit gesunden, durch Werbung, Überweisung und Selbsteinweisung gewonnenen Teilnehmern beschreibt übereinstimmend die prädiktive Wertigkeit der Koronarkalkbestimmung im Hinblick auf koronare und kardiovaskuläre Ereignisse. Nach Adjustierung für die etablierten Risikofaktoren sind erhöhte Kalkscores mit einem 5- bis 10fach erhöhten Risiko kardialer Ereignisse assoziiert. In jüngster Zeit wurden auch Ergebnisse aus strikt unselektierten, bevölkerungsweiten Kollektiven bekannt, welche die prädiktive Wertigkeit der Koronarkalkbestimmung bestätigen. In Deutschland bietet dazu die bevölkerungsbasierte Heinz-Nixdorf-Recall-Studie im Ruhrgebiet eine wichtige Datengrundlage.

In Übereinstimmung mit den aktuellen Empfehlungen der amerikanischen und europäischen Fachgesellschaften wird die Koronarkalkbestimmung insbesondere bei Patienten eingesetzt, die ein intermediäres Risiko auf der Basis der klinischen Befunde und Risikofaktorenanalyse aufweisen. Deutlich erhöhte Kalkscores geben dem behandelnden Arzt eine Rationale zur intensiven Risikotherapie. Dies gilt auch für ältere Patienten, bei denen die etablierten Risikofaktoren einen Teil ihrer prädiktiven Wertigkeit verlieren. Die Anwendung des Verfahrens bei Selbsteinweisern oder als primäres Mittel der Risikostratifizierung kann nicht empfohlen werden.

Schlüsselwörter

Koronare Atherosklerose Risikostratifizierung Bildgebung Elektronenstrahltomographie kardiale Computertomographie 

Analysis of cardiovascular risk using cardio-CT and coronary calcium measurements

Abstract

Frequently, myocardial infarction or sudden coronary death are the index manifestations of coronary artery disease. After decades of falling incidence rates, it is expected that against the background of recent trends in the prevalence of obesity and diabetes, we will see a stabilized incidence or even increase in coronary artery disease in the coming years. In view of the high out-of-hospital mortality of acute myocardial infarction, medical care is unable to provide a benefit for many patients. Coronary calcium measurements allow for identification of asymptomatic subjects with an increased coronary risk who are likely to benefit from risk-modifying therapy.

Coronary calcium is a largely specific expression of coronary atherosclerosis and is correlated with overall coronary plaque volume. Due to the complex biology of the vessel wall and its ability to undergo compensatory remodelling, coronary calcium does not necessarily indicate significant stenosis. A number of studies including healthy self-referred and physician-referred volunteers consistently describe the predictive value of coronary calcium with regard to coronary and cardiovascular clinical events. After adjusting for coronary risk factors, increased amounts of coronary calcium are associated with a 5- to 10-times elevated relative risk. Recently, first results from strictly unselected, population-based cohorts have been reported which confirm the predictive ability of coronary calcium measurements. In Germany, important data are provided by the population-based Heinz Nixdorf Recall study.

Concordant with actual guidelines issued by US and European expert panels, coronary calcium measurements can be used especially in patients with an indeterminate risk on the basis of clinical assessment and risk factor analysis. Substantially elevated coronary calcium scores provide a rationale for intensified risk-modifying therapy. This is also true for elderly patients in whom the established risk factors lose some of their predictive power. The use of coronary calcium measurements in self-referred patients or as a primary means for risk stratification is not encouraged.

Key words

Coronary atherosclerosis risk stratification cardiac imaging electron-beam tomography computed tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abizaid AS, Mintz GS, Abizaid A et al (1999) One-year follow-up after intravascular- ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J Am Coll Cardiol 34:707–715PubMedCrossRefGoogle Scholar
  2. 2.
    Achenbach S, Ropers D, Pohle K et al (2002) Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106:1077–1082PubMedCrossRefGoogle Scholar
  3. 3.
    Ajani UA, Ford ES (2006) Has the risk for coronary heart disease changed among US adults? J Am Coll Cardiol 48:1177–1182PubMedCrossRefGoogle Scholar
  4. 4.
    Ambrose JA, Tannenbaum MA, Alexopoulos D et al (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62PubMedCrossRefGoogle Scholar
  5. 5.
    Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD (2005 a) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 46:158–165PubMedCrossRefGoogle Scholar
  6. 6.
    Arad Y, Spadaro LA, Roth M et al (2005 b) Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E. The St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol 46:166–172PubMedCrossRefGoogle Scholar
  7. 7.
    Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105:310–315PubMedCrossRefGoogle Scholar
  8. 8.
    Beckman JA, Ganz J, Creager MA et al (2001) Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 21:1618–1622PubMedCrossRefGoogle Scholar
  9. 9.
    Berman DS, Wong ND, Gransar H et al (2004) Relationship between stressinduced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930PubMedCrossRefGoogle Scholar
  10. 10.
    Bild DE, Bluemke DA, Burke GL et al (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156:871–881PubMedCrossRefGoogle Scholar
  11. 11.
    Bocksch WG, Schartl M, Beckmann SH et al (1994) Intravascular ultrasound imaging in patients with acute myocardial infarction: comparison with chronic stable angina pectoris. Coron Artery Dis 5:727–735PubMedGoogle Scholar
  12. 12.
    Budoff MJ, Achenbach S, Blumenthal RS et al, American Heart Association Committee on Cardiovascular Imaging and Intervention; American Heart Association Council on Cardiovascular Radiology and Intervention; American Heart Association Committee on Cardiac Imaging, Council on Clinical Cardiology (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791PubMedCrossRefGoogle Scholar
  13. 13.
    Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870PubMedCrossRefGoogle Scholar
  14. 14.
    Burke AP, Taylor A, Farb A et al (2000) Coronary calcification: insights from sudden coronary death victims. Z Kardiol 89 (Suppl 2):49–53PubMedCrossRefGoogle Scholar
  15. 15.
    Burke AP, Kolodgie FD, Farb A et al (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940PubMedGoogle Scholar
  16. 16.
    Burke AP, Kolodgie FD, Farb A et al (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105:297–303PubMedCrossRefGoogle Scholar
  17. 17.
    de Feyter PJ, Ozaki Y, Baptista J et al (1995) Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation 92:1408–1413PubMedGoogle Scholar
  18. 18.
    Detrano R, Hsiai T, Wang S et al (1996) Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 27:285–290PubMedCrossRefGoogle Scholar
  19. 18a.
    Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345PubMedCrossRefGoogle Scholar
  20. 19.
    Emond M, Mock MB, Davis KB et al (1994) Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90:2645–2657PubMedGoogle Scholar
  21. 20.
    Erbel R, Möhlenkamp S, Lehmann N et al, on behalf of the Heinz Nixdorf Recall Study Investigative Group (2007) Sex related cardiovascular risk stratification based on quantification of atherosclerosis and inflammation. Atherosclerosis [Epub ahead of print]Google Scholar
  22. 21.
    Erbel R, Möhlenkamp S, Kerkhoff G, Budde T, Schmermund A (2007) Non-invasive screening for coronary artery disease: calcium scoring. Heart 93:1620–1629PubMedCrossRefGoogle Scholar
  23. 22.
    Erbel R, Möhlenkamp S, Lehmann N et al (2008) Kardiovaskuläre Risikofaktoren und Zeichen subklinischer Atherosklerose: Daten der bevölkerungsbezogenen Heinz Nixdorf Recall Studie. Dtsch Ärztebl 105(1/2):1–8Google Scholar
  24. 23.
    Farb A, Burke AP, Tang AL et al (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1364PubMedGoogle Scholar
  25. 24.
    Georgiou D, Budoff MJ, Kaufer E et al (2001) Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 38:105–110PubMedCrossRefGoogle Scholar
  26. 25.
    Graham I, Atar D, Borch-Johnson K et al (2007) European guidelines on cardiovascular disease prevention in clinical practice. Fourth joint task force of the European Society of Cardiology and other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur J Cardiovasc Prev Rehab 14 (Suppl 2):S1–S113CrossRefGoogle Scholar
  27. 26.
    Greenland P, Smith SC, Grundy SN (2001) Current perspective: Improving coronary heart disease risk assessment in asymptomatic people. Role of traditional risk factors and noninvasive cardiovascular tests. Circulation 104:1863–1867PubMedCrossRefGoogle Scholar
  28. 27.
    Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215PubMedCrossRefGoogle Scholar
  29. 28.
    Greenland P, Bonow RO, Brundage BH et al, American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography); Society of Atherosclerosis Imaging and Prevention; Society of Cardiovascular Computed Tomography (2007) ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 115:402–426PubMedCrossRefGoogle Scholar
  30. 29.
    Gohlke H, Winter M, Karoff M, Held K (2007) CARRISMA: a new tool to improve risk stratification and guidance of patients in cardiovascular risk management in primary prevention. Eur J Cardiovasc Prev Rehabil 14:141–148PubMedCrossRefGoogle Scholar
  31. 30.
    He ZX, Hedrick TD, Pratt CM et al (2000) Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 101:244–251PubMedGoogle Scholar
  32. 31.
    Hoffmann B, Moebus S, Möhlenkamp S et al, Heinz Nixdorf Recall Study Investigative Group (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116:489–496PubMedCrossRefGoogle Scholar
  33. 32.
    Keevil JG, Cullen MW, Gangnon R et al (2007) Implications of cardiac risk and low-density lipoprotein cholesterol distributions in the United States for the diagnosis and treatment of dyslipidemia. Data from National Health and Nutrition Examination Survey 1999 to 2002. Circulation 115:1363–1370PubMedCrossRefGoogle Scholar
  34. 33.
    Kondos GT, Hoff JA, Sevrukov A et al (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576PubMedCrossRefGoogle Scholar
  35. 34.
    LaMonte MJ, FitzGerald SJ, Church TS et al (2005) Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol 162:421–429PubMedCrossRefGoogle Scholar
  36. 35.
    Laudon DA, Vukov LF, Breen JF et al (1999) Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med 33:15–21PubMedCrossRefGoogle Scholar
  37. 36.
    McClelland RL, Chung H, Detrano R et al (2006) Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113:30–37PubMedCrossRefGoogle Scholar
  38. 37.
    McLaughlin VV, Balogh T, Rich S (1999) Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol 84:327–328PubMedCrossRefGoogle Scholar
  39. 38.
    Mintz GS, Pichard AD, Popma JJ et al (1997) Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 29:268–274PubMedCrossRefGoogle Scholar
  40. 39.
    Möhlenkamp S, Lehmann N, Schmermund A et al (2003) Prognostic value of extensive coronary calcium quantities in symptomatic males – a 5-year follow-up study. Eur Heart J 24:845–854PubMedCrossRefGoogle Scholar
  41. 40.
    Möhlenkamp S, Schmermund A, Kröger K et al (2006) Coronary atherosclerosis and cardiovascular risk in masters male marathon runners: rationale and design of the “Marathon Study”. Herz 31:575–585PubMedCrossRefGoogle Scholar
  42. 41.
    Mokdad AH, Ford ES, Bowman BA et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79PubMedCrossRefGoogle Scholar
  43. 42.
    Nasir K, Michos ED, Rumberger JA et al (2004) Coronary artery calcification and family history of premature coronary heart disease: sibling history is more strongly associated than parental history. Circulation 110:2150–2156PubMedCrossRefGoogle Scholar
  44. 43.
    Nemetz PN, Roger VL, Ransom JE et al (2008) Recent trends in the prevalence of coronary disease: a population-based autopsy study of nonnatural deaths. Arch Intern Med 168:264–270PubMedCrossRefGoogle Scholar
  45. 44.
    Olshansky SJ, Passaro DJ, Hershow RC et al (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138–1145PubMedCrossRefGoogle Scholar
  46. 45.
    Pletcher MJ, Tice JA, Pignone M et al (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 28/164:1285–1292CrossRefGoogle Scholar
  47. 46.
    Proudfit WL, Bruschke VG, Sones FM Jr (1980) Clinical course of patients with normal or slightly or moderately abnormal coronary arteriograms: 10-year follow-up of 521 patients. Circulation 62:712–717PubMedGoogle Scholar
  48. 47.
    Rasheed Q, Nair R, Sheehan H et al (1994) Correlation of intracoronary ultrasound plaque characteristics in atherosclerotic coronary artery disease patients with clinical variables. Am J Cardiol 73:753–758PubMedCrossRefGoogle Scholar
  49. 48.
    Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162PubMedGoogle Scholar
  50. 49.
    Schmermund A, Denktas AE, Rumberger JA et al (1999) Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: comparison with cardiac risk factors and radionuclide perfusion imaging. J Am Coll Cardiol 34:777–786PubMedCrossRefGoogle Scholar
  51. 50.
    Schmermund A, Erbel R (2001) Current Perspective: Unstable coronary plaque and its relation to coronary calcium. Circulation 104:1682–1687PubMedCrossRefGoogle Scholar
  52. 51.
    Schmermund A, Schwartz RS, Adamzik M et al (2001) Coronary atherosclerosis in unheralded sudden coronary death under age fifty: histopathologic comparison with “healthy” subjects dying out of hospital. Atherosclerosis 155:499–508PubMedCrossRefGoogle Scholar
  53. 52.
    Schmermund A, Erbel R, Silber S (2002) Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2,030 persons with no symptoms of coronary artery disease. Am J Cardiol 90:168–173PubMedCrossRefGoogle Scholar
  54. 53.
    Schmermund A, Möhlenkamp S, Berenbein S et al (2006) Populationbased assessment of subclinical coronary atherosclerosis using electronbeam computed tomography. Atherosclerosis 185:177–182PubMedCrossRefGoogle Scholar
  55. 54.
    Schmermund A, Lehmann N, Bielak LF et al (2007) Comparison of subclinical coronary atherosclerosis and risk factors in unselected populations in Germany and US-America. Atherosclerosis 195:e207–216PubMedCrossRefGoogle Scholar
  56. 55.
    Taylor AJ, Bindeman J, Feuerstein I et al (2005) Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 46:807–814PubMedCrossRefGoogle Scholar
  57. 56.
    Vliegenthart R, Oudkerk M, Hofman A et al (2005) Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112:572–577PubMedCrossRefGoogle Scholar
  58. 57.
    Ward MR, Pasterkamp G, Yeung AC et al (2000) Arterial remodeling. Mechanisms and clinical implications. Circulation 102:1186–1191PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Cardioangiologisches Centrum BethanienFrankfurt am MainGermany
  2. 2.Westdeutsches Herzzentrum Essen, Klinik für KardiologieEssenGermany

Personalised recommendations