Advertisement

Knowability and Other Onto-theological Paradoxes

  • Franca D’AgostiniEmail author
Article
  • 13 Downloads

Abstract

In virtue of Fitch-Church proof, also known as the knowability paradox, we are able to prove that if everything is knowable, then everything is known. I present two ‘onto-theological’ versions of the proof, one concerning collective omniscience and another concerning omnificence. I claim these arguments suggest new ways of exploring the intersection between logical and ontological givens that is a grounding theme of religious thought. What is more, they are good examples of what I call semi-paradoxes: apparently sound arguments whose conclusion is not properly unacceptable, but simply arguable.

Keywords

Knowability Omniscience Omnificence Paradoxes Onto-theology 

Mathematics Subject Classification

Primary 03A05 Secondary 03B65 03B53 

Notes

References

  1. 1.
    Armstrong, D.M.: Sketch for a Systematic Metaphysics. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  2. 2.
    Beall, J.C.: Fitch’s proof, verificationism and the knower paradox. Aust. J. Philos. 78, 241–247 (2000) CrossRefGoogle Scholar
  3. 3.
    Beall, J.C.: Knowability and odd epistemic possibilities. In: Salerno, J. (ed.) New Essays on the Knowability Paradox. Oxford University Press, Oxford (2009)Google Scholar
  4. 4.
    Bigelow, J.: Omnificence. Analysis 65, 187–96 (2005)CrossRefGoogle Scholar
  5. 5.
    Brogaard, B., Salerno J.: Fitch’s paradox of knowability. In: Zalta, E. (ed.) Stanford Encyclopedia. https://plato.stanford.edu/archives/win2013/entries/fitch-paradox/ (2013)
  6. 6.
    Cozzo, C.: What we can learn from the paradox of knowability. Topoi 13, 71–78 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dummett, M.: Victor’s error. Analysis 61, 1–2 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Edgington, D.: The paradox of knowability. Mind 94, 557–68 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Edgington, D.: On conditionals. Mind 104, 235–329 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Edgington, D.: Conditionals. In: Goble, L. (ed.) The Blackwell Guide to Philosophical Logic, pp. 385–413. Blackwell, Oxford (2001)Google Scholar
  11. 11.
    Fitch, F.B.: A logical analysis of some value concepts. J. Symb. Log. 28, 135–42 (1963)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goldstein, L.: ‘This statement is not true’ is not true. Analysis 52, 1–5 (1992)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Guigon, G.: Bringing about and conjunction: a reply to Bigelow on omnificence. Analysis 69, 452–458 (2009)CrossRefGoogle Scholar
  14. 14.
    Hegel, G.W.F.: Wissenschaft der Logik (1813), Moldenhauer, E., Michel, K.M. (eds.), Werke, vol. 5. Frankfurt a. M.: Suhrkamp (1986)Google Scholar
  15. 15.
    Humberstone, I.: The formalities of collective omniscience. Philos. Stud. 48, 401–23 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kvanvig, J.L.: The Knowability Paradox. Clarendon Press, Oxford (2006)CrossRefGoogle Scholar
  17. 17.
    Oppy, G.: Ontological Arguments and Belief in God. Cambridge University Press, New York (1995)Google Scholar
  18. 18.
    Oppy, G.: Ontological arguments. In: Zalta, E. (ed.) Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/win2016/entries/ontological-arguments/ (2016)
  19. 19.
    Priest, G.: Doubt Truth to Be a Liar. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  20. 20.
    Quine, W.V.O.: The ways of paradox. In: Quine, W.V.O. (ed.) The Ways of Paradox and Other Essays, pp. 1–18. Random House, New York (1962)Google Scholar
  21. 21.
    Sainsbury, R.M.: Paradoxes, 3rd edn. Cambridge University Press, Cambridge (1987)Google Scholar
  22. 22.
    Salerno, J.: Knowability Noir: 1945–1963. In: Salerno, J. (ed.) New Essays on the Knowability Paradox. Oxford University Press, Oxford (2009)CrossRefGoogle Scholar
  23. 23.
    Tennant, N.: The Taming of the True. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  24. 24.
    Williamson, T.: On the paradox of knowability. Mind 96, 256–261 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Williamson, T.: Knowledge and Its Limits. Oxford University Press, Oxford (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State University of MilanMilanItaly

Personalised recommendations