Advertisement

1st World Logic Day: 14 January 2019

  • Jean-Yves BeziauEmail author
Article

Abstract

We assess the celebration of the 1st World Logic Day which recently took place all over the world. We then answer the question Why a World Logic Day? in two steps. First we explain why promoting logic, emphasizing its fundamental importance and its relations with many other fields. Secondly we examine the sense of a one-day celebration: how this can help reinforcing logic day-to-day and why logic deserves it. We make a comparison with other existing one-day celebrations. We end by presenting and commenting the logo of the World Logic Day.

Keywords

Logic Logos Reasoning Aristotle Boole Tarski Gödel Universal language One-day celebration 

Mathematics Subject Classification

Primary 03-01 Secondary 03A05 03A10 

Notes

Acknowledgements

Thanks to the numerous colleagues all over the world who have supported and/or organized the celebration of the 1st World Logic Day.

References

  1. 1.
    Akrami, M.: From logic in Islam to Islamic logic. Log. Univers. 11, 61–83 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnauld, A., Nicole, P.: La Logique ou lart de penser (Logic or the art of thinking). Savreux, Paris (1662)Google Scholar
  3. 3.
    Beziau, J.-Y.: Les universités face la globalisation: vers une université mondiale? In: Naishtat, F. (ed.) Journée de l’Unesco 2004, vol. 10, pp. 207–211. Unesco, Paris (2006)Google Scholar
  4. 4.
    Beziau, J.-Y.: Being aware of rational animals. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Representation and Reality: Humans, Animals and Machines, pp. 319–331. Springer, Cham (2017)Google Scholar
  5. 5.
    Beziau, J.-Y.: A chromatic hexagon of psychic dispositions. In: Silva, M. (ed.) How Colours Matter to Philosophy, pp. 273–388. Springer, Cham (2017)CrossRefGoogle Scholar
  6. 6.
    Beziau, J.-Y.: Is the principle of contradiction a consequence of \(x^{2} = x\)? Log. Univers. 12, 55–81 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beziau, J.-Y.: Universal logic: evolution of a project. Log. Univers. 12, 1–8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beziau, J.-Y.: Logic Prizes et Cætera. Log. Univers. 12, 271–296 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Beziau, J.-Y., Correia, M.: Squaring Easter Island. S. Am. J. Logic 3, 185–193 (2017)Google Scholar
  10. 10.
    Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. MacMillan, London (1854)zbMATHGoogle Scholar
  11. 11.
    Bréal, M.: Essai de sémantique, science des significations. Hachette, Paris (1897)Google Scholar
  12. 12.
    Carnap, R.: Logical Foundations of the Unity of Science. International Encyclopedia of Unified Science, vol. I, pp. 42–62. University of Chicago Press, Chicago (1938)Google Scholar
  13. 13.
    Carnap, R.: Intellectual autobiography. In: Schlipp, A. (ed.) The Philosophy of Rudolf Carnap. Open Court, LaSalle (1963)Google Scholar
  14. 14.
    Corcoran, J.: The inseparability of logic and ethics. Free Inquiry 9, 37–40 (1989)Google Scholar
  15. 15.
    Couturat, L., Leau, L.: Histoire de la langue universelle. Hachette, Paris (1903)Google Scholar
  16. 16.
    Garrido, A., Wybraniec-Skardowska, U. (eds.): The Lvov–Warsaw School, Past and Present. Birkäuser, Basel (2018)zbMATHGoogle Scholar
  17. 17.
    Genesereth, M.: Stanford Introduction to Logic—An Online Course on Symbolic Logic. University of Stanford, Stanford (2012–2019)Google Scholar
  18. 18.
    Henkin, L., Suppes, P., Tarski, A. (eds.): The Axiomatic Method with Special Reference to Geometry and Physics—Proceedings of an International Symposium Held at the University of California, Berkeley, 26 Dec 1957–4 Jan 1958. North-Holland, Amsterdam (1959)Google Scholar
  19. 19.
    Jaspers, D.: Logic and colour. Log. Univers. 6, 227–248 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kalmus, P.: A climate scientist who decided not to fly, YES! Magazine (2016)Google Scholar
  21. 21.
    Max, I.: A molecular logic of chords and their internal harmony. Log. Univers. 12, 239–269 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Moktefi, A., Shin, S.-J. (eds.): Visual Reasoning with Diagrams. Birkäuser, Basel (2013)zbMATHGoogle Scholar
  23. 23.
    National Day Calendar, National Dress Up your Pet Day. https://nationaldaycalendar.com/national-dress-up-your-pet-day-january-14/
  24. 24.
    Piaget, J.: Recherche. Edition de la Concorde, Lausanne (1918)Google Scholar
  25. 25.
    Singer, P.: Animal Liberation. HarperCollins, New York (1975)Google Scholar
  26. 26.
    Smullyan, R.: Languages in which self reference is possible. J. Symb. Logic 22, 55–67 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Smullyan, R.: Gödel’s incompleteness theorems. In: Goble, L. (ed.) The Blackwell Guide to Philosophical Logic. Blackwell, Oxford (2001)Google Scholar
  28. 28.
    Smullyan, R.: Reflections—The Magic, Music and Mathematics of Raymond Smullyan. World Scientific, Singapore (2015)CrossRefzbMATHGoogle Scholar
  29. 29.
    Symons, J., Pombo, O., Torres, J.M. (eds.): Otto Neurath and the Unity of Science. Springer, Dordrecht (2011)Google Scholar
  30. 30.
    Tarski, A.: Lectures at UNICAMP in 1975, edited by L. Suguitani, J.P. Viana and I.M.L. D’Ottaviano. Editora UNICAMP, Campinas (2016)Google Scholar
  31. 31.
  32. 32.
    United Nations, World Statistics Day, Resolution adopted by the General Assembly on 3 June 2015. http://undocs.org/A/RES/64/267
  33. 33.
    Woodger, J.H.: The Axiomatic Method in Biology. Cambridge University Press, Cambridge (1937)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UFRJ - University of Brazil, Rio de JaneiroRio de JaneiroBrazil
  2. 2.CNPq - Brazilian Research CouncilBrasíliaBrazil
  3. 3.ABF - Brazilian Academy of PhilosophyRio de JaneiroBrazil

Personalised recommendations