Advertisement

Logica Universalis

, Volume 12, Issue 3–4, pp 297–325 | Cite as

A Note on a Description Logic of Concept and Role Typicality for Defeasible Reasoning Over Ontologies

  • Ivan VarzinczakEmail author
Article

Abstract

In this work, we propose a meaningful extension of description logics for non-monotonic reasoning. We introduce \(\mathcal {ALCH}^{\bullet }\), a logic allowing for the representation of and reasoning about both typical class-membership and typical instances of a relation. We propose a preferential semantics for \(\mathcal {ALCH}^{\bullet }\) in terms of partially-ordered DL interpretations which intuitively captures the notions of typicality we are interested in. We define a tableau-based algorithm for checking \(\mathcal {ALCH}^{\bullet }\) knowledge-base consistency that always terminates and we show that it is sound and complete w.r.t. our preferential semantics. The general framework we here propose can serve as the foundation for further exploration of non-monotonic reasoning in description logics and similarly structured logics.

Keywords

Description logic defeasible reasoning typicality tableaux 

Mathematics Subject Classification

Primary 03B70 Secondary 68T27 68T30 68T15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I am grateful to Richard Booth, Arina Britz, Giovanni Casini, Fred Freitas and Tommie Meyer for many stimulating discussions on the topics of the present paper. I would like to thank Jean-Yves Béziau for encouraging me to participate in the logic contests. I am also grateful to the Universal Logic Prize jury members Hartry Field, Michèle Friend, Grzegorz Malinowski, Ahti-Veikko Pietarinen, Peter Schroeder-Heister, Göran Sundholm and Leon van der Torre for their appreciation of this work, and to the Louis Couturat Logic Prize anonymous referees for their constructive comments on an earlier version of the present paper. This work was partially supported by the project Reconciling Description Logics and Non-Monotonic Reasoning in the Legal Domain (PRC CNRS–FACEPE France–Brazil). Special thanks to Sihem, without whose support this work would have not come to existence, and to whom I dedicate the logic prizes it has won.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  2. 2.
    Baader, F., Hollunder, B.: How to prefer more specific defaults in terminological default logic. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 69–675. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  3. 3.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14(1), 149–180 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  5. 5.
    Benferhat, S., Bouraoui, Z.: Min-based possibilistic DL-Lite. J. Logic Comput. 27(1), 261–297 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier, North-Holland (2006)zbMATHGoogle Scholar
  7. 7.
    Bonatti, P., Faella, M., Petrova, I.M., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J. Artif. Intell. Res. 42, 719–764 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bonatti, P., Lutz, C., Wolter, F.: The complexity of circumscription in description logic. J. Artif. Intell. Res. 35, 717–773 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bonatti, P., Sauro, L.: On the logical properties of the nonmonotonic description logic DL\(^{N}\). Artif. Intell. 248, 85–111 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Booth, R., Casini, G., Meyer, T., Varzinczak, I.: On the entailment problem for a logic of typicality. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2805–2811 (2015)Google Scholar
  12. 12.
    Booth, R., Meyer, T., Varzinczak, I.: PTL: a propositional typicality logic. In: Fariñas del Cerro, L., Herzig, A., Mengin, J. (eds.) Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA), Number 7519 in LNCS, pp. 107–119. Springer, New York (2012)Google Scholar
  13. 13.
    Booth, R., Meyer, T., Varzinczak, I.: A propositional typicality logic for extending rational consequence. In: Fermé, E.L., Gabbay, D.M., Simari, G.R. (eds.) Trends in Belief Revision and Argumentation Dynamics, volume 48 of Studies in Logic–Logic and Cognitive Systems, pp. 123–154. King’s College Publications, London (2013)Google Scholar
  14. 14.
    Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell. 68(1), 87–154 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Britz, K., Casini, G., Meyer, T., Varzinczak, I.: Preferential role restrictions. In: Proceedings of the 26th International Workshop on Description Logics, pp. 93–106 (2013)Google Scholar
  16. 16.
    Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Lang, J., Brewka, G. (eds.) Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 476–484. AAAI Press/MIT Press, Cambridge (2008)Google Scholar
  17. 17.
    Britz, K., Heidema, J., Meyer, T.: Modelling object typicality in description logics. In: Nicholson, A., Li, X. (eds.) Proceedings of the 22nd Australasian Joint Conference on Artificial Intelligence, Number 5866 in LNAI, pp. 506–516. Springer, New York (2009)Google Scholar
  18. 18.
    Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential description logics. In: Wang, D., Reynolds, M. (eds.) Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence, Number 7106 in. Springer, New York (2011)Google Scholar
  19. 19.
    Britz, K., Varzinczak, I.: Introducing role defeasibility in description logics. In: Michael, L., Kakas, A.C. (eds.) Proceedings of the 15th European Conference on Logics in Artificial Intelligence (JELIA), Number 10021 in LNCS, pp. 174–189. Springer, New York (2016)zbMATHGoogle Scholar
  20. 20.
    Britz, K., Varzinczak, I.: Context-based defeasible subsumption for \(d\cal{SROIQ}\). In: Proceedings of the 13th International Symposium on Logical Formalizations of Commonsense Reasoning (2017)Google Scholar
  21. 21.
    Britz, K., Varzinczak, I.: Toward defeasible \(\cal{SROIQ}\). In: Proceedings of the 30th International Workshop on Description Logics (2017)Google Scholar
  22. 22.
    Britz, K., Varzinczak, I.: From KLM-style conditionals to defeasible modalities, and back. J. Appl. Non Class. Log. (JANCL) 28(1), 92–121 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Britz, K., Varzinczak, I.: Preferential accessibility and preferred worlds. J. Log. Lang. Inf. (JoLLI) 27(2), 133–155 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Britz, K., Varzinczak, I.: Rationality and context in defeasible subsumption. In: Ferrarotti, F., Woltran, S. (eds.) Proceedings of the 10th International Symposium on Foundations of Information and Knowledge Systems (FoIKS), Number 10833 in LNCS, pp. 114–132. Springer, New York (2018)CrossRefGoogle Scholar
  25. 25.
    Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Introducing defeasibility into OWL ontologies. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.T., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) Proceedings of the 14th International Semantic Web Conference (ISWC), Number 9367 in LNCS, pp. 409–426. Springer, New York (2015)Google Scholar
  26. 26.
    Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) Proceedings of the 12th European Conference on Logics in Artificial Intelligence (JELIA), Number 6341 in LNCS, pp. 77–90. Springer, New York (2010)Google Scholar
  27. 27.
    Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif. Intellv Res. (JAIR) 48, 415–473 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description logics. In: Dershowitz, N., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Number 4790 in LNAI, pp. 257–272. Springer, New York (2007)Google Scholar
  30. 30.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA), Number 5293 in LNAI, pp. 192–205. Springer, New York (2008)Google Scholar
  31. 31.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans. Comput. Log. 10(3), 18:1–18:47 (2009)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: \(\cal{ALC}+{T}\): a preferential extension of description logics. Fundam. Inform. 96(3), 341–372 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of rational closure: from propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Governatori, G.: Defeasible description logics. In: Antoniou, G., Boley, H. (eds.) Rules and Rule Markup Languages for the Semantic Web, Number 3323 in LNCS, pp. 98–112. Springer, New York (2004)CrossRefGoogle Scholar
  36. 36.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web (WWW), pp. 48–57. ACM (2003)Google Scholar
  37. 37.
    Heymans, S., Vermeir, D.: A defeasible ontology language. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE Number 2519 in LNCS, pp. 1033–1046. Springer, New York (2002)Google Scholar
  38. 38.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55, 1–60 (1992)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lindström, P.: First-order predicate logic with generalized quantifiers. Theoria 32, 286–195 (1966)MathSciNetzbMATHGoogle Scholar
  41. 41.
    McCarthy, J.: Circumscription, a form of nonmonotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)MathSciNetCrossRefGoogle Scholar
  42. 42.
    McCarthy, J.: Applications of circumscription to formalizing common-sense knowledge. Artif. Intell. 28(1), 89–116 (1986)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Padgham, L., Zhang, T.: A terminological logic with defaults: A definition and an application. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 662–668. Morgan Kaufmann Publishers, London (1993)Google Scholar
  44. 44.
    Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in possibilistic logic. In: Mellouli, K. (ed.) Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Number 4724 in LNAI, pp. 828–839. Springer, New York (2007)Google Scholar
  45. 45.
    Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 294–305 (1992)Google Scholar
  46. 46.
    Quantz, J., Ryan, M.: Preferential default description logics. Technical report, TU Berlin (1993)Google Scholar
  47. 47.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI), pp. 466–471 (1991)Google Scholar
  48. 48.
    Sengupta, K., Alfa Krisnadhi, A., Hitzler, P.: Local closed world semantics: grounded circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) Proceedings of the 10th International Semantic Web Conference (ISWC), Number 7031 in LNCS, pp. 617–632. Springer, New York (2011)Google Scholar
  49. 49.
    Shoham, Y.: Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, Cambridge (1988)Google Scholar
  50. 50.
    Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pp. 676–681. Morgan Kaufmann Publishers, London (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre de Recherche en Informatique de Lens (CRIL)Université d’Artois and CNRSLensFrance
  2. 2.CSIR Centre for Artificial Intelligence Research (CAIR)Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations