Hintikka and the Functions of Logic

  • Montgomery Link


Jaakko Hintikka (1929–2015) points out the power of Skolem functions to affect both what there is and what we know. There is a tension in his presupposition that these functions actually extend the realm of logic. He claims to have resolved the tension by “reconstructing constructivism” along epistemological lines, instead of by a typical ontological construction; however, after the collapse of the distinction between first and second order, that resolution is not entirely satisfactory. Still, it does throw light on the conceptual analysis Hintikka proposes.


Logic foundations of mathematics Skolem function dependence quantification branching quantifier game theoretical semantics 

Mathematics Subject Classification

Primary 03A05 Secondary 00A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks very much to an anonymous reviewer and to the editor of the Hintikka special in the Logica Universalis, Ahti-Veikko Pietarinen. Thanks to Akihiro Kanamori, Charles Parsons, and Juliet Floyd. Thanks to Trevor Link. Thanks also to Brian Kiniry, Alex Taylor, Timothy Shugrue, and Connie Lai, and to Kelly Link and Joanne Montgomery Link, as well. Errors are mine.


  1. 1.
    Auxier, R.E., Hahn, L.E. (eds.): The Philosophy of Jaakko Hintikka. In: The Library of Living Philosophers, vol. XXX. Open Court, Chicago and La Salle (2006)Google Scholar
  2. 2.
    Barwise, J.: On branching quantifiers in English. J. Philos. Log. 8, 47–80 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cook, R., Shapiro, S.: Hintikka’s revolution: the principles of mathematics revisited. Br. J. Philos. Sci. 49, 309–316 (1998)CrossRefGoogle Scholar
  4. 4.
    Dummett, M.: Truth and Other Enigmas. Duckworth, London (1978)Google Scholar
  5. 5.
    Dummett, M.: The Seas of Language. Clarendon, Oxford (1993)zbMATHGoogle Scholar
  6. 6.
    Enderton, H.B.: Finite partially-ordered quantifiers. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 16, 393–397 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fine, T.L.: Theories of Probability: An Examination of Foundations. Academic Press, New York (1973)zbMATHGoogle Scholar
  8. 8.
    Frankfurt, H.G. (ed.): Leibniz: A Collection of Critical Essays. Anchor Books, Garden City (1972)Google Scholar
  9. 9.
    Gödel, K.: Russell’s mathematical logic. In: Schilpp, P.A. (ed.) The Philosophy of Bertrand Russell. Library of Living Philosophers, vol. V, pp. 123–153. Northwestern University, Evanston (1944). Reprinted in: Feferman, S., et al. (eds.) Collected Works. Volume II. Publications 1938–1974, pp. 102–141. Oxford University Press, Oxford and New York (1990)Google Scholar
  10. 10.
    Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods, pp. 167–183. Pergamon Press, Oxford; Warsaw, PAN (1961)Google Scholar
  11. 11.
    Hintikka, J., Kulas, J.: The Game of Language: Studies in Game-Theoretical Semantics and Its Applications. D. Reidel, Dordrecht and Boston (1983)Google Scholar
  12. 12.
    Hintikka, J.: Knowledge and Belief. In: An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca and London (1962)Google Scholar
  13. 13.
    Hintikka, J.: Leibniz on plenitude, relations, and the ‘reign of law’. In: [8], pp. 155–190 (1972)Google Scholar
  14. 14.
    Hintikka, J.: Logic, language-games, and information. In: Kantian Themes in the Philosophy of Logic. Clarendon, Oxford (1973)Google Scholar
  15. 15.
    Hintikka, J.: Models for modalities. In: Selected Essays. D. Reidel, Dordrecht (1969)Google Scholar
  16. 16.
    Hintikka, J.: Form and content in quantification theory. Acta Philos. Fennica 8, 7–55 (1955)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hintikka, J.: Quantifiers vs. quantification theory. Linguist. Inq. 5, 153–177 (1974)zbMATHGoogle Scholar
  18. 18.
    Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hintikka, J.: Which mathematical logic is the logic of mathematics? Log. Univers. 6, 459–475 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language. Elsevier, New York (1996)Google Scholar
  21. 21.
    Hintikka, J., Vilkko, R.: Existence and predication from Aristotle to Frege. Philos. Phenomenolog. Res. 73, 359–377 (2006)CrossRefGoogle Scholar
  22. 22.
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  23. 23.
    Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5, 539–563 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hodges, W.: Review of the principles of mathematics revisited. J. Log. Lang. Inf. 6, 457–460 (1997)CrossRefGoogle Scholar
  25. 25.
    Ishiguro, H.: Leibniz’s theory of the ideality of relations. In: [8], pp. 191–213 (1972)Google Scholar
  26. 26.
    Kanamori, A.: The empty set, the singleton, and the ordered pair. Bull. Symb. Log. 9, 273–298 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Martin-Löf, P.: The definition of random sequences. Inf. Control 6, 602–619 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martin-Löf, P.: On the notion of randomness. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and Proof Theory. North-Holland, Amsterdam (1970)Google Scholar
  29. 29.
    Quine, W.V.: Reply to Professor Marcus (1962). Reprinted as Essay 16. In: The Ways of Paradox and Other Essays, Rev. edn, pp. 177–184. Harvard University Press, Cambridge (1976)Google Scholar
  30. 30.
    Quine, W.V.: Word and Object. MIT Press, Cambridge (1960)zbMATHGoogle Scholar
  31. 31.
    Quine, W.V.: Replies. In: Davidson, D., Hintikka, J. (eds.) Words and Objections: Essays on the Work of W. V. Quine. D. Reidel, Dordrecht (1969)Google Scholar
  32. 32.
    Quine, W.V.: Philosophy of Logic, 2nd edn. Harvard University Press, Cambridge (1986)Google Scholar
  33. 33.
    Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  34. 34.
    Tait, W.: The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and Its History. Oxford University Press, New York (2005)zbMATHGoogle Scholar
  35. 35.
    Tennant, N.: Games some people would have all of us play. Philos. Math. 3(6), 90–115 (1998)CrossRefGoogle Scholar
  36. 36.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Velleman, D.J.: Review of the principles of mathematics revisited. Mind 108, 170–179 (1999)Google Scholar
  38. 38.
    Walkoe Jr., W.J.: Finitely partially-ordered quantification. J. Symb. Log. 35, 535–555 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, H.: A survey of Skolem’s work in logic. In: Skolem, T., Fenstad, J.E. (eds.) Selected Works in Logic, pp. 17–52. Scandinavian University Books, Oslo (1970)Google Scholar
  40. 40.
    Wang, H.: From Mathematics to Philosophy. Humanities Press, New York (1974)zbMATHGoogle Scholar
  41. 41.
    Wang, H.: A Logical Journey: From Gödel to Philosophy. MIT Press, Cambridge (1996)Google Scholar
  42. 42.
    Webb, J.C.: Hintikka on Aristotelean constructions, Kantian intuitions, and Peircean theorems. In: [1], pp. 195–301 (2006)Google Scholar
  43. 43.
    Woodin, W.H.: In search of ultimate-\(L\): The 19th midrasha mathematicae lectures. Bull. Symb. Log. 23, 1–109 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhilosophySuffolk UniversityBostonUSA

Personalised recommendations