Logica Universalis

, Volume 7, Issue 2, pp 233–264 | Cite as

A General Lindström Theorem for Some Normal Modal Logics

  • Sebastian Enqvist


There are several known Lindström-style characterization results for basic modal logic. This paper proves a generic Lindström theorem that covers any normal modal logic corresponding to a class of Kripke frames definable by a set of formulas called strict universal Horn formulas. The result is a generalization of a recent characterization of modal logic with the global modality. A negative result is also proved in an appendix showing that the result cannot be strengthened to cover every first-order elementary class of frames. This is shown by constructing an explicit counterexample.

Mathematics Subject Classification (2010)

Primary 03B45 Secondary 03C95 


Modal logic Lindström’s theorem bisimulation abstract model theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho A.V., Beeri C., Ullman J.D.: Theory of joins in relational databases. ACM Trans. Database Syst. 4, 297–314 (1979)CrossRefGoogle Scholar
  2. 2.
    Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Phil. Logic 27, 217–274 (1998)Google Scholar
  3. 3.
    Barwise, J., Feferman, S. (eds.): Model-theoretic logics. Springer, Berlin (1985)Google Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Cambridge (2001)Google Scholar
  5. 5.
    Dawar, A., Otto, M.: Modal characterisation theorems over special classes of frames. Ann. Pure Appl. Logic 161, 1–42 (2009)Google Scholar
  6. 6.
    de Rijke, M.: A Lindström theorem for modal logic. In: Modal Logic and Process Algebra, pp. 217–230. CSLI Publications, Stanford (1995)Google Scholar
  7. 7.
    Fagin R.: Horn clauses and database dependencies. J. ACM 29, 952–985 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Goranko, V., Otto, M.: Model theory for modal logic. In: Blackburn P., van Benthem J., Wolter F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2006)Google Scholar
  9. 9.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)Google Scholar
  10. 10.
    Hollenberg, M.: Logic and Bisimulation. Doctoral dissertation, Universiteit Utrecht (1998)Google Scholar
  11. 11.
    Kurz, A., Venema, Y.: Coalgebraic Lindström theorems. In: Advances in Modal Logic (AiML 2010)Google Scholar
  12. 12.
    Lindström P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4, 455–469 (1979)Google Scholar
  14. 14.
    Makowsky, J.A.: Why Horn formulas matter in computer science: Initial structures and generic examples. TR No. 329, Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel (1984)Google Scholar
  15. 15.
    Otto, M., Piro, R.: A Lindström characterization of the guarded fragment and of modal logic with a global modality. In: Advances in Modal Logic (AiML 2008)Google Scholar
  16. 16.
    Poizat, B.: A Course in Model Theory. Springer, Berlin (2000)Google Scholar
  17. 17.
    van Benthem, J.: Modal correspondence theory. Doctoral dissertation, Universiteit van Amsterdam, Instituut voor Logica en Grondslagenonderzoek van de Exacte Wetenschappen (1977)Google Scholar
  18. 18.
    van Benthem J.: A new modal Lindström theorem. Logica Universalis. 1, 125–138 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    van Benthem, J., ten Cate, B., Väänänen, J.: Lindström theorems for fragments of first-order logic. Logical Methods Comput. Sci. 5, 1–27 (2009)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Sebastian EnqvistLundSweden

Personalised recommendations