Logica Universalis

, Volume 6, Issue 3–4, pp 411–458 | Cite as

Jean van Heijenoort’s Contributions to Proof Theory and Its History

Article

Abstract

Jean van Heijenoort was best known for his editorial work in the history of mathematical logic. I survey his contributions to model-theoretic proof theory, and in particular to the falsifiability tree method. This work of van Heijenoort’s is not widely known, and much of it remains unpublished. A complete list of van Heijenoort’s unpublished writings on tableaux methods and related work in proof theory is appended.

Mathematics Subject Classification (2010)

Primary 03B05 03B10 03C07 03B35 03C35 03F03 03F07 Secondary 03-03 01A60 03B15 03B20 03C10 03F25 

Keywords

Proof theory theories of quantification tableaux methods falsifiability trees history of logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles F.F.: Lewis Carroll’s method of trees: its origins in studies in logic. Modern Logic 1, 25–34 (1991)MathSciNetGoogle Scholar
  2. 2.
    Abeles F.F.: Herbrand’s fundamental theorem and the beginning of logic programming. Modern Logic 4, 63–73 (1994)MathSciNetMATHGoogle Scholar
  3. 3.
    Abeles, F.F.: The first unification algorithm for automated deductive systems. In: Cameron, D.E., Wine, J.D. (eds.) Proceedings of the Midwest Mathematics History Conferences, vol. 1, Proceedings of the Fourth Midwest Conference on the History of Mathematics. Miami University, Oxford, pp. 125–127. Modern Logic Publishing, MLP Books, Ames (1997)Google Scholar
  4. 4.
    Abeles F.F.: From the tree method in modern logic to the beginning of automated theorem proving. In: Shell-Gellasch, A., Jardine, D. (eds) From Calculus to Computers: Using 200 Years of Mathematics History in the Teaching of Mathematics. Mathematical Association of America, Washington, D.C., pp. 149–160 (2006)Google Scholar
  5. 5.
    Abeles F.F.: Lewis Carroll’s visual logic. Hist. Philos. Logic 28, 1–17 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Andrews P.B.: Herbrand award acceptance speech. Research Report No, 03-003. Department of Mathematical Sciences, Carnegie-Mellon University. J. Autom. Reason. 31, 169–187 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Anellis, I.H.: Review of [189]. Privately printed in: Anellis, I.H.: Introduction to Proof Theory: Papers in Metamathematics. Mississippi Valley State University, Itta Bena, MS. pp. 38–42 (1980); reprinted: Modern Logic 2, 338–341 (1992)Google Scholar
  8. 8.
    Anellis, I.H.: The Löwenheim–Skolem theorem, theories of quantification, and Beweistheorie, abstract #763-02-4. Notices of the American Mathematical Society, vol. 26, p. A-22 (1979)Google Scholar
  9. 9.
    Anellis, I.H.: Jean van Heijenoort as a logician. In: Comer, S.D. (ed.) Third Southeastern Logic Symposium, Abstracts, March 7, 1987, pp. 3–4 (1987)Google Scholar
  10. 10.
    Anellis, I.H.: Jean van Heijenoort as a logician—in memory of Jean van Heijenoort, 1912–1986. In: Société canadienne d’histoire et de philosophies des mathématiques/Canadian Society for History and Philosophy of Mathematics. 13th annual meeting, McMaster University, Hamilton, Ontario, May 25–27, 1987. Programme, abstract #2, p. 4 (1987)Google Scholar
  11. 11.
    Anellis I.H.: Some unpublished papers of Jean van Heijenoort: sources. Hist. Math. 15, 270–274 (1988)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Anellis, I.H.: Maslov’s inverse method and its applications to programming logic. In: Iowa State University Conference on Algebraic Logic and Universal Algebra in Computer Science, 1–4 June 1988, Ames, Iowa. Abstracts. p. 2 (1988)Google Scholar
  13. 13.
    Anellis I.H.: La obra de Jean van Heijenoort en el campo de la logica: sus aportaciones a la teoria de la demonstracion. Mathesis 5, 353–370 (1989)MathSciNetGoogle Scholar
  14. 14.
    Anellis I.H.: From semantic tableaux to Smullyan trees: the history of the falsifiability tree method. Modern Logic 1, 36–69 (1990)MathSciNetMATHGoogle Scholar
  15. 15.
    Anellis, I.H.: The Löwenheim–Skolem theorem, theories of quantification, and proof theory. In: [47], pp. 71–82 (1991)Google Scholar
  16. 16.
    Anellis I.H.: Jean van Heijenoort’s contributions to proof theory and its history. Modern Logic 2, 312–335 (1992)MathSciNetMATHGoogle Scholar
  17. 17.
    Anellis I.H.: Review of [104]. Modern Logic 3, 169–173 (1993)Google Scholar
  18. 18.
    Anellis I.H.: Review of [34]. Trans. Charles S. Peirce Soc. 40, 349–359 (2004)Google Scholar
  19. 19.
    Aspray, W.: Oswald Veblen and the origins of mathematical logic at Princeton. In: [47]. pp. 54–70 (1991)Google Scholar
  20. 20.
    Badesa, C.: El teorema de Löwenheim en el marco de la teoría de relativos. Ph.D. thesis, University of Barcelona; published: Barcelona: Publicacións, Universitat de Barcelona. Barcelona (1991)Google Scholar
  21. 21.
    Badesa, C.: (Maudsley, M. trans.) The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton University Press, Princeton/Oxford (2004)Google Scholar
  22. 22.
    Bartley, W.W.: Editor’s introduction. In: [39], pp. 3–36 (1977)Google Scholar
  23. 23.
    Bell J.L., Machover M.: A Course in Mathematical Logic. North-Holland, Amsterdam (1977)MATHGoogle Scholar
  24. 24.
    Bénéjam, J.-P.: Application du théorème de Herbrand à la présentation de thèses tératologiques du calcul des prédicats élémentaire, Comptes rendus hebdomadaires des seances de l’Académie des Sciences, ser. A, vol. 268, pp. 757–760Google Scholar
  25. 25.
    Bénéjam J.-P.: Review of [86]. J. Symbol. Logic 40, 94–95 (1975)CrossRefGoogle Scholar
  26. 26.
    Bernays, P.: Mathematische Existenz und Widerspruchsfreiheit. In: études de philosophie des sciences, en hommage à Ferdinand Gonseth à l’occasion de son soixantième anniversaire. éditions du Griffon, Neuchâtel, pp. 11–25 (1950)Google Scholar
  27. 27.
    Bernays, P.: Über den Zusammenhang der Herbrand’schen Satzes mit den neueren Ergebnissen von Schütte und Stenius. In: Proceedings of the International Congress of Mathematicians, Amsterdam, vol. 2, p. 397 (1954)Google Scholar
  28. 28.
    Beth, E.W.: Semantic entailment and formal derivability, Koninklijke Nederlandse Akademie van Wetenschappen (n.s.), 18(13), pp. 309–342 (1955)Google Scholar
  29. 29.
    Beth E.W.: Remarks on natural deduction, Koninklijke Nederlandse Akademie van Wetenschappen. Indag. Math. 58(17), 322–325 (1955)MathSciNetMATHGoogle Scholar
  30. 30.
    Beth, E.W.: Semantic construction of intuitionistic logic, Mededlingen van den Koninklijke Nederlandse Akademie van Wetenschappen (n.r.) 19(11), 357–388 (1956)Google Scholar
  31. 31.
    Beth E.W.: Formal Methods. Reidel, New York (1962)MATHGoogle Scholar
  32. 32.
    Blumenthal, O.: Lebensgeschichte. In: [90], pp. 398–429 (1935)Google Scholar
  33. 33.
    Bondecka-Krzykowska, I. Semantic tree method—historical perspective and applications. Ann. UMCS Inf. AI 3, 15–25 (2005). http://www.cse.chalmers.se/edu/year/2011/course/DAT060/tree.pdf
  34. 34.
    Brady G.: From Peirce to Skolem: A Neglected Chapter in the History of Logic. North-Holland, Amsterdam (2000)MATHGoogle Scholar
  35. 35.
    Buss, S.R.: On Herbrand’s theorem. In: Logic and Computational Complexity, International Workshop LCC ’94, Indianapolis, IN USA, October 1994. Selected Papers. Springer, Berlin, pp. 195–209 (1995)Google Scholar
  36. 36.
    Corcoran J.: From categoricity to completeness. Hist. Philos. Logic 3, 113–119 (1981)MathSciNetGoogle Scholar
  37. 37.
    Davydov, G.V.: Sintez metoda rezolyutsii s obratnym metodom. Zapiski Nauchnye Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR (ZNS-LOMI), vol. 20, pp. 24–35, 282 (1971); English translation: Synthesis of the resolution method with the inverse method. J. Soviet Math. 1, 12–18 (1973)Google Scholar
  38. 38.
    Dawson, J.W.: Jean van Heijenoort and the Gödel Project (this issue) (2012)Google Scholar
  39. 39.
    Dodgson, C.L.: (Bartley, W.W. ed.) Lewis Carroll’s Symbolic Logic. Clarkson N. Potter, Inc., Publishers, New York (1977)Google Scholar
  40. 40.
    Dreben B.: Corrections to Herbrand. Notice Am Math Soc 10, 285 (1963)Google Scholar
  41. 41.
    Dreben, B.: Letter to Kurt Gödel; published, with an introduction. In: [70], pp. 389–391 (2003)Google Scholar
  42. 42.
    Dreben B., Aanderaa S.: Herbrand analyzing functions. Bull. Am. Math. Soc. 70, 697–698 (1964)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Dreben B., Andrews P.B., Aanderaa S.: Errors in Herbrand. Notice. Am. Math. Soc. 10, 285 (1963)Google Scholar
  44. 44.
    Dreben B., Andrews P.B., Aanderaa S.: False lemmas in Herbrand. Bull. Am. Math. Soc. 69, 699–706 (1963)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Dreben B., Denton J.: A supplement to Herbrand. J. Symbol. Logic 31, 393–398 (1966)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Dreben B., Denton J.: Herbrand-style consistency proofs (1968). In: Myhill, J.R., Kino, A., Vesley, R.E. (eds.) Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968. North-Holland, Amsterdam, pp. 419–433 (1970)CrossRefGoogle Scholar
  47. 47.
    Drucker T. (ed): Perspectives on the History of Mathematical Logic. Birkhäuser, Boston (1991)MATHGoogle Scholar
  48. 48.
    Ernest P.: A note concerning Irving H. Anellis ‘Distortions and discontinuities of mathematical progress. Philosophica 50, 123–125 (1992)MathSciNetGoogle Scholar
  49. 49.
    Fang J.: Hilbert: Towards a Philosophy of Modern Mathematics. Paideia Press, Hauppauge (1970)MATHGoogle Scholar
  50. 50.
    Feferman, A.B.: Politics, Logic, and Love: The Life of Jean van Heijenoort. Wellesley, MA, A K Peters (1983); reprinted as From Trotsky to Gödel: The Life of Jean van Heijenoort. Wellesley, MA, A K Peter (1993)Google Scholar
  51. 51.
    Feferman, A.B., Feferman, S.: Jean van Heijenoort (1912–1986). In: [131], pp. 1–7 (1987); reprinted, with revisions: [52]Google Scholar
  52. 52.
    Feferman A.B., Feferman S.: Jean van Heijenoort (1912–1986). Modern Logic 2, 231–238 (1992)MathSciNetMATHGoogle Scholar
  53. 53.
    Feferman, S.: Letter to I.H. Anellis, October 15, 1986 (1986)Google Scholar
  54. 54.
    Feferman, S.: Kreisel’s “unwinding program”. In: [131], pp. 247–273 (1996)Google Scholar
  55. 55.
    Feys, R.: Préface to [62], pp. VII–XI (1955)Google Scholar
  56. 56.
    Feys, R.: Note C. Méthodes N de Jaśkowski, Bernays et Joahnsson. In: [62], pp. 35–39 (1955)Google Scholar
  57. 57.
    Feys, R.: Note F. Signification des sequences et de schemas de structure. In: [62], pp. 90–92 (1955)Google Scholar
  58. 58.
    Fraïssé R.: Réflexions sur la complétude selon Herbrand. Int. Logic Rev. 3, 86–98 (1972)Google Scholar
  59. 59.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Verlag von Louis Nebert Halle (1879); English translation by S. Bauer-Mengelberg. In: [164], pp. 5–82 (1967)Google Scholar
  60. 60.
    Frege, G.: (Gabriel, G., Kambartel, F., Thiel, C., eds.) Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell sowie ausgewählte Einzelbriefe Freges. Felix Meiner Verlag, Hamburg (1980)Google Scholar
  61. 61.
    Gentzen, G.: Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39, 176–210, 403–431 (1934–1935)Google Scholar
  62. 62.
    Gentzen, G.: (Ladrière, J., trans.) Recherches sur la déduction logique. Presses Universitaires de France, Paris (1955). Translation of [61]Google Scholar
  63. 63.
    Girard, J.-Y.: La mouche dans la bouteille (en mémoire de Jean van Heijenoort). In: [132], pp. 13–16 (1987)Google Scholar
  64. 64.
    Girard, J.-Y.: The fly in the bottle. Modern Logic 2, 256–259 (1992). English translation by T. Drucker of [63]Google Scholar
  65. 65.
    Gödel, K.: Über die formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38, 173–198 (1931); English translation in: [164], pp. 596–616 (1967); reprinted, with English translation in: [68], pp. 167–195 (1986)Google Scholar
  66. 66.
    Gödel, K.: Diskussion zur Grundlegung der Mathematik. Erkenntnis 2, 147–151 (1931); reprinted, with English translation in: [68], pp. 200–205 (1986)Google Scholar
  67. 67.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958); reprinted, with English translation in: [69], pp. 240–251 (1990)Google Scholar
  68. 68.
    Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., eds.) Collected Works, vol. I: Publications 1929–1936. Oxford University Press, New York (1986)Google Scholar
  69. 69.
    Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., eds.) Collected Works, vol. II: Publications 1938–1974. Oxford University Press, New York (1990)Google Scholar
  70. 70.
    Gödel, K.: (Feferman, S., Dawson, J.W., Goldfarb, W.D., Parsons, C., Sieg, W., eds.), Collected Works, vol. IV: Correspondence A–G. Oxford University Press, Oxford (2003)Google Scholar
  71. 71.
    Gödel K.: (Feferman, S., Dawson, J.W., Goldfarb, W.D., Parsons, C., Sieg, W., eds.), Collected Works, vol. V: Correspondence H–Z. Oxford University Press, Oxford (2003)Google Scholar
  72. 72.
    Goldfarb, W.D.: Introduction. In: [86], pp. 1–20 (1971)Google Scholar
  73. 73.
    Goldfarb W.D.: Review of [24] and [58]. J. Symbol. Logic 40, 238–239 (1975)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Goldfarb W.D.: Herbrand’s error and Gödel’s correction. Modern Logic 3, 103–118 (1993)MathSciNetMATHGoogle Scholar
  75. 75.
    Goldfarb, W.D.: Burton Dreben. In: [68], pp. 389–391 (2003)Google Scholar
  76. 76.
    Hahn O. (1909) Zur Axiomatik des logischen Gebietkalkuls. Archiv für systematische Philosophie 15, 345–347Google Scholar
  77. 77.
    Herbrand, J.: Sur la théorie de la démonstration, Comptes rendus hebdomaires des séances de l’Académie des sciences (Paris), vol. 186, pp. 1274–1276 (1928); reprinted in: [85], pp. 21–23 (1968); English translation in: [86], pp. 29–34 (1971)Google Scholar
  78. 78.
    Herbrand, J.: Non-contradiction des axiomes arithmétiques, Comptes rendus hebdomaires des séances de l’Académie des sciences (Paris), vol. 188, pp. 303–304 (1929); reprinted in: [85], pp. 25–26 (1968); English translation in: [86], pp. 35–37 (1971)Google Scholar
  79. 79.
    Herbrand, J.: Sur quelques propriétés des propositions vraies et leurs applications, Comptes rendus hebdomaires des séances de l’Académie des sciences (Paris), vol. 188, pp. 1076–1078 (1929); reprinted in: [85], pp. 27–29 (1968); English translation in: [86], pp. 38–40 (1971)Google Scholar
  80. 80.
    Herbrand, J.: Sur le problème fondamental des mathématiques, Comptes rendus hebdomaires des séances de l’Académie des sciences (Paris), vol. 189, pp. 554–556, 570 (1929); reprinted in: [85], pp. 31–33 (1971); English translation in: [86], pp. 41–43 (1971)Google Scholar
  81. 81.
    Herbrand, J.: Recherches sur la théorie de la démonstration, Ph.D. thesis, University of Paris (1930); Prace Towarzystwa Naukowego Warszawkiego, Wydział III, no. 33 (1930); reprinted in: [85], pp. 35–353 (1968); English translation in: [86], pp. 44–202 (1971); English translation of Chapter 5 in: [164], pp. 525–581 (1967)Google Scholar
  82. 82.
    Herbrand, J.: Le bases de la logique hilbertienne. Revue de Métaphysique et de Morale 37, 243–255 (1930); reprinted in: [85], pp. 155–166 (1968); English translation in: [86], pp. 203–214 (1971)Google Scholar
  83. 83.
    Herbrand, J.: Sur la non-contradiction de l’arithmétique. Journal für die reine und angewandte Mathematik 166, 1–8 (1931); reprinted in [85], pp. 221–231 (1968); English translations in: [86], pp. 282–298 (1971) and [164], pp. 618–628 (1967)Google Scholar
  84. 84.
    Herbrand, J.: Sur le problème fondamental des mathématiques, Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawkiego, Wydział III, no. 24, pp. 12–56 (1931); reprinted in: [85], pp. 67–107 (1968); English translation, with notes, in: [86], pp. 215–271 (1971)Google Scholar
  85. 85.
    Herbrand J.: (van Heijenoort, J., ed.) écrits logiques. Presses Universitaire de France, Paris (1968)Google Scholar
  86. 86.
    Herbrand, J.: (Goldfarb, W.D., trans. & ed.), Logical Writings. Harvard University Press, Cambridge (1971) English translation of [96]Google Scholar
  87. 87.
    Heyting, A.: Les fondements des mathématiques; intuitionnisme, théorie de la démonstration. Gauthier-Villars, Paris (1955)Google Scholar
  88. 88.
    Hilbert, D.: Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen. B.G. Teubner, Leipzig, pp. 1–92 (1899)Google Scholar
  89. 89.
    Hilbert, D.: Axiomatisches Denken, Mathematische Annalen 78, 405–415 (1918). Reprinted in: [101], pp. 146–156 (1935)Google Scholar
  90. 90.
    Hilbert, D. Gesammelte Abhandlungen, III. Springer, Berlin, pp. 146–156 (1935; 2nd ed., 1970)Google Scholar
  91. 91.
    Hintikka, J.: Distributive normal forms in the calculus of predicates. Acta Philos. Fennica 6(Helsinki) (1953)Google Scholar
  92. 92.
    Hintikka J.: A new approach to sentential logic, Societas Scientiarum Fennica. Comment. Phys. Math. 17(2), 1–14 (1953)MathSciNetGoogle Scholar
  93. 93.
    Hintikka, J.: Form and content in quantification theory. In: [95], pp. 7–55 (1955)Google Scholar
  94. 94.
    Hintikka, J.: Reduction in the theory of types. In: [95], pp. 56–115 (1955)Google Scholar
  95. 95.
    Hintikka, J.: Two papers on symbolic logic. Acta Philos. Fennica 8(8) (Helsinki) (1955)Google Scholar
  96. 96.
    Hintikka, J.: Notes on quantification theory. Societas Scienarum Fennica Comment. Phys. Math. 17(12) (Helsinki), 1–13 (1955)Google Scholar
  97. 97.
    Howard, W.A.: Some proof theory in the 1960’s. In: [131], pp. 275–288 (1996)Google Scholar
  98. 98.
    Huntington, E.V.: A complete set of postulates for the theory of absolute continuous magnitude. Trans. Am. Math. Soc. 3, 264–279 (1902)Google Scholar
  99. 99.
    Idel’son A.V., Mints G.E. (eds): Matematicheskaya teoriya logicheskogo vyvoda. Nauka, Moscow (1967)Google Scholar
  100. 100.
    Jaśkowski S.: On the rules of supposition in formal logic. Studia Logica 1, 5–32 (1934)MATHGoogle Scholar
  101. 101.
    Jeffrey R.C.: Formal Logic: Its Scope and Limits. McGraw-Hill, New York (1967)Google Scholar
  102. 102.
    Jeffrey, R.C.: Letter to I.H. Anellis, May 6, 1987 (1987)Google Scholar
  103. 103.
    Johansson I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Composit. Math. 4, 119–136 (1937)MathSciNetGoogle Scholar
  104. 104.
    Jounnaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: a rule-based survey of unification. In: [126], pp. 257–321 (1991)Google Scholar
  105. 105.
    Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York/ Toronto: North-Holland, Amsterdam (1952)Google Scholar
  106. 106.
    König, D.: Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe. Akademische Verlagsgesellschaft, Leipzig (1936)Google Scholar
  107. 107.
    Kreisel G.: On the concepts of completeness and interpretation of formal systems. Fundam. Math. 39, 103–127 (1951)MathSciNetGoogle Scholar
  108. 108.
    Kreisel G.: Mathematical significance of consistency proofs. J. Symbol. Logic 23, 155–182 (1958)MathSciNetCrossRefGoogle Scholar
  109. 109.
    Kreisel G.: Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulas. J. Symbol. Logic 23, 317–330 (1958)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Kreisel, G.: Unpublished appendix (1959) to: “Set-theoretic problems suggested by the notion of potential totality”. In: Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics. Warsaw. Państwowe Wydawnictwo Naukowe, Warszawa/Pergamon Press, New York, pp. 103–140 (1961)Google Scholar
  111. 111.
    Kreisel, G.: Informal rigour and completeness proofs. In: Lakatos, I., (ed.) Problems in the Philosophy of Mathematics, I. North-Holland, Amsterdam, pp. 138–172 (Discussion; Bar-Hillel, Y., Heyting, A., Myhill, J., Kreisel, G.), pp. 172–186 (1967)Google Scholar
  112. 112.
    Kreisel G.: A survey of proof theory. J. Symbol. Logic 33, 321–388 (1968)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Kuehner D.G.: A note on the relation between resolution and Maslov’s inverse method. Mach. Intell. 6, 73–76 (1971)MATHGoogle Scholar
  114. 114.
    Ladd[-Franklin], C.: On the algebra of logic. In: [133], pp. 17–71 (1883)Google Scholar
  115. 115.
    Lassez J.-L., Plotkin G. (eds): Computational Logic: Essays in Honor of Alan Robinson. MIT Press, Cambridge (1991)MATHGoogle Scholar
  116. 116.
    Lewis C.I.: A Survey of Symbolic Logic: The Classic Algebra of Logic, Outline of its History, its Content, Interpretations and Applications, and Relation of it to Later Developments in Symbolic Logic. University of California Press, Berkeley (1918)Google Scholar
  117. 117.
    Lifschitz V.: Mechanical Theorem Proving in the USSR: The Leningrad School. Delphic Associates, Falls Church (1986)MATHGoogle Scholar
  118. 118.
    Lis Z.: Wynikanie semantyczne a wykanie formalne. Studia Logica 10, 39–60 (1960)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Löwenheim L.: Über die Auflösung von Gleichungen im logischen Gebietkalkul. Math. Ann. 68, 169–207 (1910)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447–470 (1915); English translation in: [164], pp. 228–251 (1967)Google Scholar
  121. 121.
    Marquand, A.: A machine for producing syllogistic variations. In: [133], pp. 12–15 (1883)Google Scholar
  122. 122.
    Maslov, S.Y.: Obratnyi metod ustanovleniya vyvodimosti dlya logicheskikh ischislenii. Trudy matematicheskogo instituta im. V. A. Steklova, vol. 98, pp. 56–87 (1968); (English translation by A. Yablonsky: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P. (ed.) The Calculi of Symbolic Logic, I. Proceedings of the Steklov Institute of Mathematics no. 98. American Mathematical Society, Providence, pp. 25–95 (1968)Google Scholar
  123. 123.
    Maslov, S.Y.: Svyaz mezdu taktiki obratnogo metoda i metoda rezolyutsii. Doklady Akademii Nauk SSSR-ZNS LOMI, vol. 16, pp. 137–146 (1969); English translation: Proof-search strategies for methods of resolution type. Mach. Intell. 6, 77–90 (1971)Google Scholar
  124. 124.
    Mints, G.E.: Teorema Erbrana dlya ischisleniya predikatov s ravenstvom i funktional’nymi simvolami. Doklady Akademii Nauk SSSR 169, 273–275 (1966); English translation by L.F. Boron: Herbrand’s theorem for the predicate calculus with equality and functional symbols. Soviet Math. 7, 911–914 (1966)Google Scholar
  125. 125.
    Mints, G.E.: Analog teoremy Erbrana dlya nepredvarennykh formul konstruktivnogo ischisleniya predikatov. In: Slisenko, A.O. (ed.) Issledovaniya po konstruktivnoi matematki i matematichskoi logike 1, Zapiski Nauchnaykh Seminarov Leningradskogo Otdeleniyi Matematichskogo Instituta im. V. A. Steklova AN SSSR (LOMI), vol. 4 Nauka, Moscow, pp. 123–133 (1967); English translation: Analog of Herbrand’s theorem for [non]prenex formulas of constructive predicate calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematcal Logic, Part I, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, vol. 4. Consultants Bureau, New York, pp. 47–51 (1969)Google Scholar
  126. 126.
    Mints, G.E.: Prilozhenie. Teorema Erbrana (Appendix. Herbrand’s theorem). In: [99], pp. 311–350Google Scholar
  127. 127.
    Mints, G.E.: Dizyunktivnaya interpretatsiya ischisleniya LJ, In: Slisenko, A.O. (ed.) Issledovaniya po konstruktivnoi matematike i matematicheskoi logike, II. ZNSLOMI. Nauka, Leningrad, pp. 182–188 (1968); English translation: Disjunctive interpretation of the LJ calculus. In: Slisenko, A.O., (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad 8. Consultants Bureau, New York, pp. 86–89 (1970)Google Scholar
  128. 128.
    Müller, K.E.: Über die Algebra der Logik. Die Grundlagen des Gebietekalkul. 2 Bde. B.G. Teubner, Leipzig (1900–1901)Google Scholar
  129. 129.
    Müller, K.E.: Abriss der Logik, Th.I–II.B. G. Teubner, Leipzig (1909–1910)Google Scholar
  130. 130.
    Murawski R.: Truth vs. provability—philosophical and historical remarks. Logic and Logical Philosophy 10, 93–117 (2002)MathSciNetMATHGoogle Scholar
  131. 131.
    Odifreddi P.: (ed.) Kreisleriana: About and Around Georg Kreisel. A K Peters, Wellesley (1996)Google Scholar
  132. 132.
    The Paris Logic Group (eds.) Logic Colloquium ’85. North-Holland, Amsterdam (1987)Google Scholar
  133. 133.
    Peirce, C.S. (ed.): Studies in Logic: Studies in Logic by the Members of the Johns Hopkins University. Little, Brown & Co, Boston; reprinted, with an introduction by M.H. Fisch, Amsterdam, John Benjamins Publishing Co. (1983)Google Scholar
  134. 134.
    Peirce, C.S.: The logic of relatives. In: [133], pp. 187–203 (1883)Google Scholar
  135. 135.
    Quine W.V.: A proof procedure for quantification theory. J. Symbol. Logic 20, 141–149 (1955)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Robinson J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)MATHCrossRefGoogle Scholar
  137. 137.
    Robinson J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)MATHGoogle Scholar
  138. 138.
    Robinson J.A.: Logic: Form and Function: The Mechanization of Deductive Reasoning. Elsevier North-Holland, New York (1979)MATHGoogle Scholar
  139. 139.
    Russinoff I.S.: The syllogism’s final solution. Bull. Symbol. Logic 5, 451–468 (1999)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Scanlan M.: Who were the American postulate theorists. J. Symbol. Logic 56, 981–1002 (1991)MathSciNetMATHGoogle Scholar
  141. 141.
    Schröder, E.: Vorlesungen über die Algebra der Logik (Exacte Logik). Bd. II/I. B. G. Teubner, Leipzig (1891)Google Scholar
  142. 142.
    Schröder, E.: Vorlesungen über die Algebra der Logik. Algebra und Logik der Relative. Bd. III/I. B. G. Teubner, Leipzig (1895)Google Scholar
  143. 143.
    Sieg, W.: Jacques Herbrand. In: [71], pp. 5–13 (2003)Google Scholar
  144. 144.
    Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnkapsselskapels Skrifter 1 (Mathematisk-naturvidenskabeligklasse), no. 4, pp. 1–36 (1920); reprinted in: [146], pp. 103–136 (1970); English translation by S. Bauer-Mengelberg of §1 in: [164], pp. 254–263 (1967)Google Scholar
  145. 145.
    Skolem, T.: Sur la portée de théorème du Löwenheim–Skolem. In: Gonseth, F. (ed.) Les entretiens de Zurich sur les fondements et la méthode des sciences mathématiques. Leemann, Zurich, pp. 25–47 (1941); reprinted in: [155], pp. 455–482 (1970)Google Scholar
  146. 146.
    Skolem, T.: Fenstad, J.E., (ed.), The Selected Works of Th. Skolem. Universitetsforlaget, Oslo/Bergen/Tromso (1970)Google Scholar
  147. 147.
    Smullyan R.M.: A unifying principle in quantification theory. Proc. Natl. Acad. Sci. 49, 828–832 (1963)MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    Smullyan R.M.: Analytic natural deduction (ms., 1963). J. Symbol. Logic 30, 123–139 (1965)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Smullyan R.M.: A unifying principle in quantification theory (ms., 1965). In: Addison, J.W., Henkin, L., Tarski, A. (eds) The Theory of Models, pp. 433–434. North-Holland, Amsterdam (1973)Google Scholar
  150. 150.
    Smullyan R.M.: Trees and nest structures (ms., 1964). J. Symbol. Logic 31, 303–321 (1966)MathSciNetMATHCrossRefGoogle Scholar
  151. 151.
    Smullyan R.M.: Finite nest structures and proportional logic (ms., 1964). J. Symbol. Logic 31, 322–324 (1966)MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Smullyan R.M.: Uniform Gentzen systems. J. Symbol. Logic 33, 549–559 (1966)MathSciNetGoogle Scholar
  153. 153.
    Smullyan R.M.: Analytic cut. J. Symbol. Logic 33, 560–564 (1968)MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    Smullyan, R.M.: First-order logic. Springer, Berlin (1968); reprinted, with corrections and a new preface: New York, Dover Publications (1995)Google Scholar
  155. 155.
    Smullyan, R.M.: The tableau method in quantification theory (was to have appear). Trans. N. Y. Acad. Sci. (unpublished)Google Scholar
  156. 156.
    Smullyan, R.M.: Abstract quantification theory. In: Kino, A., Myhill, J.R., Vesey, R. (eds.) Intuitionism and Proof theory: Proceedings of the Summer Conference at Buffalo, New York, 1966. North-Holland, Amsterdam, pp. 79–91 (1970) [155]Google Scholar
  157. 157.
    Smullyan, R.M.: Letter to I.H. Anellis (no date; posted 15 May 1987) (1987)Google Scholar
  158. 158.
    Tarski, A.: Über den Begriff der logischen Folgerung. In: Actes du Congrès International de Philosophie Scientifique, vol. 7, Paris, pp. 1–11 (1936); English translation in: [159], pp. 409–425 (1956; 1983)Google Scholar
  159. 159.
    Tarski, A.: (Woodger, J.H., trans.) Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Clarendon Press, Oxford (1956); revised ed.: Corcoran, J., ed. Hackett Publishing, Indianapolis (1983)Google Scholar
  160. 160.
    Van Heijenoort, J.: Jean Van Heijenoort Papers, 1946–1988. Archives of American Mathematics, Dolph Briscoe Center for American History, University of Texas at Austin (1946–1988)Google Scholar
  161. 161.
    Van Heijenoort J.: Review of [26]. J. Symbol. Logic 22, 210–211 (1957)Google Scholar
  162. 162.
    Van Heijenoort J.: Review of [62]. J. Symbol. Logic 22, 350–351 (1957)CrossRefGoogle Scholar
  163. 163.
    Van Heijenoort, J.: Interpretations, satisfiability, validity, unpublished ts. In: [160], Box 3.8/86-33/1 (1966)Google Scholar
  164. 164.
    VanHeijenoort J., (ed): From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)Google Scholar
  165. 165.
    Van Heijenoort, J.: Préface. In: [85], pp. 1–12 (1968)Google Scholar
  166. 166.
    Van Heijenoort, J.: Herbrand–Kreisel on Herbrand. In: [160], Box 3.8/86-33/2 (1968)Google Scholar
  167. 167.
    Van Heijenoort, J.: On the relation between the falsifiability tree method and the Herbrand method in quantification theory. In: [160], Box 3.8/86-33/1 (1968)Google Scholar
  168. 168.
    Van Heijenoort J.: Review of [99]. J. Symbol. Logic 35, 323 (1970)Google Scholar
  169. 169.
    Van Heijenoort J.: Review of [126]. J. Symbol. Logic 35, 323–325 (1970)Google Scholar
  170. 170.
    Van Heijenoort J.: Review of [124]. J. Symbol. Logic 35, 325 (1970)Google Scholar
  171. 171.
    Van Heijenoort J.: Abstract: on the relation between the falsifiability tree method and the Herbrand method in quantification theory. J. Symbol. Logic 35, 358 (1970)Google Scholar
  172. 172.
    Van Heijenoort J.: Review of [125]. J. Symbol. Logic 36, 524–525 (1971)CrossRefGoogle Scholar
  173. 173.
    Van Heijenoort J.: Review of [127]. J. Symbol. Logic 36, 527–528 (1971)CrossRefGoogle Scholar
  174. 174.
    Van Heijenoort, J.: Notes on the tree method. In: [160], Box 3.8/86-33/1 (1971)Google Scholar
  175. 175.
    Van Heijenoort, J.: Proof of the completeness of the method of Beth sentential tableaux: unpublished ms. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  176. 176.
    Van Heijenoort, J.: Falsifiabitity trees, unpublished ts. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  177. 177.
    Van Heijenoort, J.: The tableau method for Grzegorczyk quantification theory, unpublished ms. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  178. 178.
    Van Heijenoort, J.: The tree method for intuitionistic quantification theory. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  179. 179.
    Van Heijenoort, J.: Proof of the completeness of Beth tableaux for intuitionistic quantification theory, unpublished ms. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  180. 180.
    Van Heijenoort, J.: The falsifiability-tree method for the simple theory of types with extensionality. In: [160], Box 3.8/86-33/1 (1972)Google Scholar
  181. 181.
    Van Heijenoort, J.: Comparison between the falsifiability-tree method and the Gentzen system; unpublished ts. (numbered pp. 25–33). In: [160], Box 3.8/86-33/1 (1973)Google Scholar
  182. 182.
    Van Heijenoort, J.: Soundness and completeness of the falsifiability tree method for sentential logic. In: [160], Box 3.8/86-33/1 (1973)Google Scholar
  183. 183.
    Van Heijenoort, J.: Falsifiability trees. In: [160], Box 3.8/86-33/1 (1974) (revised version of [176])Google Scholar
  184. 184.
    Van Heijenoort, J.: Proof of the law of lesser universes. In: [160], Box 3.8/86-33/1 (1974)Google Scholar
  185. 185.
    Van Heijenoort, J.: The tree method for intuitionistic sentential logic. In: [160], Box 3.8/86-33/1 (1975)Google Scholar
  186. 186.
    Van Heijenoort, J.: The tree method for intuitionistic quantification theory. In: [160], Box 3.8/86-33/1 (1975)Google Scholar
  187. 187.
    Van Heijenoort, J.: Herbrand. In: [160], Box 3.8/86-33/1 (1975)Google Scholar
  188. 188.
    Van Heijenoort, J.: Falsifiability trees. In: [160], Box 3.8/86-33/1 (1975)Google Scholar
  189. 189.
    Van Heijenoort J.: El desarrollo de la teoría de la cuantificación. Universidad Nacional Autónoma de México, Mexico City (1976)MATHGoogle Scholar
  190. 190.
    Van Heijenoort, J.: Set-theoretic semantics. In: Gandy, R.O., Holland, J.M.E. (eds.) Logic Colloquium ’76, (Oxford, 1976). North-Holland, Amsterdam, pp. 183–190 (1977); reprinted in: [198], pp. 43–53 (1985)Google Scholar
  191. 191.
    Van Heijenoort, J.: The Herbrand approach to predicate logic. In: [160], Box 3.8/86-33/1 (1976)Google Scholar
  192. 192.
    Van Heijenoort, J.: Proof of the ‘semantic’ Herbrand theorem. In: [160], Box 3.8/86-33/1 (1976)Google Scholar
  193. 193.
    Van Heijenoort, J.: Herbrand expansions and Herbrand disjunctions. In: [160], Box 3.8/86-33/1 (1976)Google Scholar
  194. 194.
    Van Heijenoort, J.: Méthode des arbres de falsifiabilité pour les logiques modales propositionnelles. In: [160], Box 3.8/86-33/1 (1976)Google Scholar
  195. 195.
    Van Heijenoort, J.: Introduction à la sémantique des logiques non-classiques. Collection de l’école Normale Supérieur des Jeunes Filles, no. 16, Paris (1979)Google Scholar
  196. 196.
    Van Heijenoort, J.: On Herbrand’s systems. In: [160], Box 3.8/86-33/1 (1980)Google Scholar
  197. 197.
    Van Heijenoort, J.: L’oeuvre logique de Jacques Herbrand et son contexte historique. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium, Logic Colloquium ’81, Marseilles, France, July 1981. North-Holland, Amsterdam, pp. 57–85 (1982); Revised English translation [199]Google Scholar
  198. 198.
    Van Heijenoort J.: Selected Essays. Bibliopolis, Naples (1985)Google Scholar
  199. 199.
    Van Heijenoort, J.: Jacques Herbrand’s work in logic and its historical context. In: [198], pp. 99–121 (1985); Revised English translation of [197]Google Scholar
  200. 200.
    Van Heijenoort, J.: (Anellis, I.H., ed.) Historical development of modern logic (1974). Modern Logic 2, 242–255 (1992); reprinted: this issue (2012)Google Scholar
  201. 201.
    Van Heijenoort, J.: Herbrand, non-classical. In: [160], Box 3.8/86-33/2 (n.d.)Google Scholar
  202. 202.
    Van Heijenoort, J.: Herbrand. In: [160], Box 3.8/86-33/2 (n.d.)Google Scholar
  203. 203.
    Van Heijenoort, J.: The axiomatic method. In: [160], Box 3.8/86-33/3 (n.d.)Google Scholar
  204. 204.
    Veblen O.: Hilbert’s foundations of geometry (review of [88]). The Monist 13, 303–309 (1902)Google Scholar
  205. 205.
    Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols. Cambridge University Press, Cambridge (1910–1913)Google Scholar
  206. 206.
    Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols. 2nd ed., Cambridge University Press, Cambridge (1925–1927)Google Scholar
  207. 207.
    Wirth, C.-P.: Herbrand’s fundamental theorem in the eyes of Jean van Heijenoort (this issue) (2012)Google Scholar
  208. 208.
    Wirth C.-P., Siekmann J., Benzmüller C., Autexier S.: Jacques Herbrand: life, logic, and automated deduction. In: Gabbay, D.M., Woods, J.H. (eds) Handbook of the History of Logic. vol. 5: Logic from Russell to Church., pp. 195–254. North-Holland, Amsterdam (2009)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Peirce Edition, Institute for American ThoughtIndiana University-Purdue University at IndianapolisIndianapolisUSA

Personalised recommendations