Logica Universalis

, Volume 6, Issue 3–4, pp 485–520 | Cite as

HERBRAND’s Fundamental Theorem in the Eyes of JEAN VAN HEIJENOORT

Article

Abstract

Using Heijenoort’s unpublished generalized rules of quantification, we discuss the proof of Herbrand’s Fundamental Theorem in the form of Heijenoort’s correction of Herbrand’s “False Lemma” and present a didactic example. Although we are mainly concerned with the inner structure of Herbrand’s Fundamental Theorem and the questions of its quality and its depth, we also discuss the outer questions of its historical context and why Bernays called it “the central theorem of predicate logic” and considered the form of its expression to be “concise and felicitous”.

Mathematics Subject Classification

03F07 01A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles F.: Herbrand’s Fundamental Theorem and the beginning of logic programming. Modern Logic 4, 63–73 (1994)MathSciNetMATHGoogle Scholar
  2. 2.
    Andrews P.B.: Herbrand Award acceptance speech. J. Autom. Reason. 31, 169–187 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Anellis, I.H.: The Löwenheim–Skolem Theorem, theories of quantification, and proof theory. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic, pp. 71–83. Birkhäuser/Springer, Berlin (1991)Google Scholar
  4. 4.
    Anellis, I.H.: Logic and its history in the work and writings of Jean van Heijenoort. Modern Logic Publ., Ames (1992)Google Scholar
  5. 5.
    Autexier, S.: Hierarchical contextual reasoning. Ph.D. thesis, FR Informatik, Saarland University (2003)Google Scholar
  6. 6.
    Autexier, S.: The core calculus. In: Nieuwenhuis, R. (ed.) 20th Int. Conf. on Automated Deduction, Tallinn, 2005. Lecture Notes in Artificial Intelligence, no. 3632, pp. 84–98. Springer, Berlin (2005)Google Scholar
  7. 7.
    Autexier, S.: Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.-P.: A generic modular data structure for proof attempts alternating on ideas and granularity. In: Kohlhase, M. (ed.) 4th Int. Conf. on Mathematical Knowledge Management (MKM), Bremen, 2005 (revised selected papers). Lecture Notes in Artificial Intelligence, no. 3863, pp. 126–142. Springer, Berlin (2006). http://www.ags.uni-sb.de/~cp/p/pds
  8. 8.
    Baaz, M., Fermüller, C.G.: Non-elementary speedups between different versions of tableaux. In: Baumgartner, P., Hähnle, R., Posegga, J. (eds.) 5th Int. Conf. on Tableaus and Related Methods, St. Goar (Germany). Lecture Notes in Artificial Intelligence, no. 918, pp. 217–230. Springer, Berlin (1995)Google Scholar
  9. 9.
    Baaz, M., Leitsch, A.: Methods of functional extension. Collegium Logicum—Annals of the Kurt Gödel Society 1, 87–122 (1995)Google Scholar
  10. 10.
    Beckert, B., Hähnle, R., Schmitt, P.H.: The even more liberalized δ-rule in free-variable semantic tableaus. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Computational Logic and Proof Theory. Proc. 3rd Kurt Gödel Colloquium. Lecture Notes in Computer Science, no. 713, pp. 108–119. Springer, Berlin (1993)Google Scholar
  11. 11.
    Berka, K., Kreiser, L. (eds.): Logik-Texte—Kommentierte Auswahl zur Geschichte der modernen Logik, 2nd rev. edn. (1st edn. 1971; 4th rev. edn. 1986.) Akademie-Verlag, Berlin (1973)Google Scholar
  12. 12.
    Bernays, P.: Über den Zusammenhang des Herbrand schen Satzes mit den neueren Ergebnissen von Schütte und Stenius. Proceedings of the International Congress of Mathematicians 1954 (Groningen and Amsterdam). Noordhoff and North-Holland/Elsevier (1957)Google Scholar
  13. 13.
    Brady, G.: From Peirce to Skolem: A Neglected Chapter in the History of Logic. North-Holland/Elsevier (2000)Google Scholar
  14. 14.
    Cohen, R.S., Wartofsky, M.W. (eds.): Proc. of the Boston Colloquium for the Philosophy of Science, 1964–1966: In: Memory of norwood russell hanson, Boston Studies in the Philosophy of Science, no. 3. D. Reidel, Dordrecht (1967)Google Scholar
  15. 15.
    Dietrich, D.: Proof planning with compiled strategies. PhD thesis, FR Informatik, Saarland University (2011)Google Scholar
  16. 16.
    Dreben B., Andrews P.B., Aanderaa S.: False lemmas in Herbrand. Bull. Am. Math. Soc. 69, 699–706 (1963)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dreben B., Denton J.: A supplement to Herbrand. J. Symbolic Logic 31(3), 393–398 (1963)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Feferman A.B.: Politics, Logic and Love—The Life of Jean van Heijenoort. A K Peters, Wellesley (1993)MATHGoogle Scholar
  19. 19.
    Feferman, S.: Jean van Heijenoort’s scholarly work. In: [18, pp. 371–390] (1993)Google Scholar
  20. 20.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd rev. edn. (1st edn. 1990). Springer, Berlin (1996)Google Scholar
  21. 21.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Verlag von L. Nebert, Halle an der Saale, 1879. Corrected facsimile in [22]. Reprint of pp. III–VIII and pp. 1–54 in [11, pp. 48–106]. English translation in [32, pp. 1–82]Google Scholar
  22. 22.
    Frege, G.: Begriffsschrift und andere Aufsätze. Wissenschaftliche Buchgesellschaft, Darmstadt, 1964, Zweite Auflage, mit Edmund Husserls und Heinrich Scholz’ Anmerkungen, herausgegeben von Ignacio AngelelliGoogle Scholar
  23. 23.
    Gabbay, D., Woods, J. (eds.): Handbook of the History of Logic. North-Holland/ Elsevier (2004)Google Scholar
  24. 24.
    Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210, 405–431 (1935). Also in [11, pp. 192–253]. English translation in [25]Google Scholar
  25. 25.
    Gentzen, G.: In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen. North-Holland/Elsevier (1969)Google Scholar
  26. 26.
    Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37, 349–360 (1930). With English translation also in [27, vol. I, pp. 102–123]Google Scholar
  27. 27.
    Gödel, K.: Collected Works. Oxford University Press, 1986ff. Eds. Feferman, S., Dawson, J.W. Jr., Goldfarb, W., Heijenoort, J.v., Kleene, S.C., Parsons, C., Sieg, W., et al.Google Scholar
  28. 28.
    Goldfarb W.: Herbrand’s error and Gödel’s correction. Modern Logic 3, 103–118 (1993)MathSciNetMATHGoogle Scholar
  29. 29.
    Gonthier G.: Formal proof—the Four-Color Theorem. Notices Am. Math. Soc. 55, 1382–1393 (2008)MathSciNetMATHGoogle Scholar
  30. 30.
    Heijenoort, J.v.: Logic as a calculus and logic as a language. Synthese 17, 324–330 (1967). Also in [14, pp. 440–446]. Also in [38, pp. 11–16]Google Scholar
  31. 31.
    Heijenoort, J.v.: On the relation between the falsifiability tree method and the Herbrand method in quantification theory. Unpublished typescript, Nov 20, 1968, 12 pp.; Jean van Heijenoort Papers, 1946–1988. Archives of American Mathematics, Center for American History, University of Texas at Austin, Box 3.8/86–33/1. Copy in Anellis Archives (1968)Google Scholar
  32. 32.
    Heijenoort, J.v.: From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, 2nd rev. edn. (1st edn. 1967). Harvard University Press (1971)Google Scholar
  33. 33.
    Heijenoort, J.v.: Herbrand, Unpublished typescript, May 18, 1975, 15 pp.; Jean van Heijenoort Papers, 1946–1988. Archives of American Mathematics, Center for American History, University of Texas at Austin, Box 3.8/86-33/1. Copy in Anellis Archives (1975)Google Scholar
  34. 34.
    Heijenoort, J.v.: El desarrollo de la teoria de la cuantifcación. Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México (1976)Google Scholar
  35. 35.
    Heijenoort, J.v.: L’œuvre logique de Herbrand et son contexte historique (1982). In: [65, pp. 57–85]. Rev. English translation is [37]Google Scholar
  36. 36.
    Heijenoort, J.v.: Friedrich Engels and mathematics. In: [38, pp. 123–151]. Previously unpublished manuscript written in 1948 (1986)Google Scholar
  37. 37.
    Heijenoort, J.v.: Herbrand’s work in logic and its historical context. In: [38, pp. 99–121]. Rev. English translation of [35] (1986)Google Scholar
  38. 38.
    Heijenoort, J.v.: Selected Essays. Bibliopolis, Napoli, copyright 1985. Also published by Librairie Philosophique J. Vrin, Paris (1986)Google Scholar
  39. 39.
    Heijenoort, J.v.: Historical development of modern logic. Modern Logic 2, 242–255 (1992). Written in 1974Google Scholar
  40. 40.
    Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930). Thèses présentées à la faculté des Sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques—1re thèse: Recherches sur la théorie de la démonstration—2me thèse: Propositions données par la faculté, Les équations de Fredholm—Soutenues le 1930 devant la commission d’examen—Président: M. Vessiot, Examinateurs: MM. Denjoy, Frechet—Vu et approuvé, Paris, le 20 Juin 1929, Le doyen de la faculté des Sciences, C. Maurain—Vu et permis d’imprimer, Paris, le 20 Juin 1929, Le recteur de l’Academie de Paris, S. Charlety—No. d’ordre 2121, Série A, No. de Série 1252—Imprimerie J. Dziewulski, Varsovie—Univ. de Paris. Also in Prace Towarzystwa Naukowego Warszawskiego, Wydział III Nauk Matematyczno-Fizychnych, Nr. 33, Warszawa. Also in [42, pp. 35–153]. Annotated English translation “Investigations in Proof Theory” by Warren Goldfarb (Chapters 1–4) and Burton Dreben and Jean van Heijenoort (Chapter 5) with a brief introduction by Goldfarb and extended notes by Goldfarb (Notes A–C, K–M, O), Dreben (Notes F–I), Dreben and Goldfarb (Notes D, J, and N), and Dreben, George Huff, and Theodore Hailperin (Note E) in [43, pp. 44–202]. English translation of § 5 with a different introduction by Heijenoort and some additional extended notes by Dreben also in [32, pp. 525–581]. (Herbrand’s PhD thesis, his cardinal work, dated April 14, 1929; submitted at the Univ. of Paris; defended at the Sorbonne June 11, 1930; printed in Warsaw, 1930.)Google Scholar
  41. 41.
    Herbrand, J.: Le développement moderne de la théorie des corps algébriques—corps de classes et lois de réciprocité. Mémorial des Sciences Mathématiques, Fascicule LXXV, Gauthier-Villars, Paris (1936). Ed. and with an appendix by Claude ChevalleyGoogle Scholar
  42. 42.
    Herbrand, J.: Écrits logiques, Presses Universitaires de France, Paris (1968). Ed. by Jean van Heijenoort. English translation is [43]. (Herbrand’s logical writings, faultily retyped)Google Scholar
  43. 43.
    Herbrand, J.: Logical Writings. Harvard University Press (1971). Ed. by Warren Goldfarb. Translation of [42] with additional annotations, brief introductions, and extended notes by Goldfarb, Burton Dreben, and Jean van Heijenoort. (Still the best source on Herbrand’s logical writings today)Google Scholar
  44. 44.
    Hilbert, D., Bernays, P.: Die Grundlagen der Mathematik—Erster Band. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, no. XL. Springer, Berlin (1934). 1st edn. (2nd edn. is [46])Google Scholar
  45. 45.
    Hilbert, D., Bernays, P.: Die Grundlagen der Mathematik—Zweiter Band. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, no. L. Springer, Berlin (1939). 1st edn. (2nd edn. is [47])Google Scholar
  46. 46.
    Hilbert, D., Bernays, P.: Die Grundlagen der Mathematik I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, no. 40. Springer, Berlin (1968). 2nd rev. edn. of [44]Google Scholar
  47. 47.
    Hilbert, D., Bernays, P.: Die Grundlagen der Mathematik II. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, no. 50. Springer, Berlin (1970). 2nd rev. edn. of [45]Google Scholar
  48. 48.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik I—Foundations of Mathematics I, Part A. College Publications, London (2011). First English translation. Commented, bilingual edition of the second eidition [46] with German facsimile, including the annotation and translation of all differences of the first German edition [46]. Translated by C.-P. Wirth. Edited by C.-P. Wirth, J. Siekmann, M. Gabbay, D. Gabbay. Advisory Board: W. Sieg (chair), I.H. Anellis, S. Awodey, M. Baaz, W. Buchholz, B. Buldt, R. Kahle, P. Mancosu, C. Parsons, V. Peckhaus, W.W. Tait, C. Tapp, R. Zach. ISBN 978-1-84890-033-2Google Scholar
  49. 49.
    Jaakko, K., Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press (1996)Google Scholar
  50. 50.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 1st edn. University of Chicago Press (1962)Google Scholar
  51. 51.
    Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 228–251 (1915). English translation: On Possibilities in the Calculus of Relatives by Stefan Bauer-Mengelberg with an introduction by Jean van Heijenoort in [32, pp. 228–251]Google Scholar
  52. 52.
    Martelli A., Montanari U.: An efficient unification algorithm. ACM Trans. Programm. Lang. Syst. 4, 258–282 (1982)MATHCrossRefGoogle Scholar
  53. 53.
    Menzler-Trott, E.: Gentzen’s Problem—Mathematische Logik im nationalsozialistischen Deutschland. Birkhäuser/Springer, Berlin (2001). Rev. English translation is [53]Google Scholar
  54. 54.
    Menzler-Trott, E.: Logic’s Lost Genius—The Life of Gerhard Gentzen. American Math. Soc. (2007). Rev. English translation of [52]Google Scholar
  55. 55.
    Paterson M.S., Wegman M.N.: Linear unification. J. Comput. Syst. Sci. 16, 158–167 (1978)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Peckhaus, V.: Schröder’s logic (2004). In: [23, vol. 3: The Rise of Modern Logic: From Leibniz to Frege, pp. 557–610]Google Scholar
  57. 57.
    Peirce, C.S.: On the algebra of logic: a contribution to the philosophy of notation. Am. J. Math. 7, 180–202 (1885). Also in [58, pp. 162–190]Google Scholar
  58. 58.
    Peirce, C.S.: Writings of Charles S. Peirce—A Chronological Edition, vol. 5, 1884–1886. Indiana University Press (1993). Ed. by C.J.W. KloeselGoogle Scholar
  59. 59.
    Schröder, E.: Vorlesungen über die Algebra der Logik, vol. 3, Algebra der Logik und der Relative, Vorlesungen I-XII. B.G. Teubner Verlagsgesellschaft, Leipzig (1895). English translation of some parts in [13]Google Scholar
  60. 60.
    Schütte, K.: Beweistheorie. Grundlehren der mathematischen Wissenschaften, no. 103. Springer, Berlin (1960). Thoroughly revised English translation: [61]Google Scholar
  61. 61.
    Schütte, K.: Proof theory. Grundlehren der mathematischen Wissenschaften, no. 225. Springer, Berlin (1977). Translated from a thorough revision of [60] by J.N. CrossleyGoogle Scholar
  62. 62.
    Skolem, T.: Über die mathematische Logik (Nach einem Vortrag gehalten im Norwegischen Mathematischen Verein am 22. Oktober 1928). Nordisk Matematisk Tidskrift 10, 125–142 (1928). Also in [63, pp. 189–206]. English translation “On Mathematical Logic” by Stefan Bauer-Mengelberg and Dagfinn Føllesdal with an introduction by Burton Dreben and Jean van Heijenoort in [32, pp. 508–524]. (First explicit occurrence of Skolemization and Skolem functions)Google Scholar
  63. 63.
    Skolem, T.: Selected Works in Logic. Universitetsforlaget Oslo (1970). Ed. by J.E. Fenstad. (Without index, but with most funny spellings in the newly set titles)Google Scholar
  64. 64.
    Smullyan R.M.: First-Order Logic. Springer, Berlin (1968)MATHCrossRefGoogle Scholar
  65. 65.
    Stern, J. (ed.): Proceedings of the Herbrand Symposium, Logic Colloquium’81, Marseilles, France, July 1981. North-Holland/Elsevier (1982)Google Scholar
  66. 66.
    Tait W.W.: Gödel’s correspondence on proof theory and constructive mathematics. Philos. Math. (III) 14, 76–111 (2006)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Taylor, R., Wiles, A.: Ring theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995). Received Oct 7, 1994. Appendix due to Gerd Faltings received Jan 26, 1995Google Scholar
  68. 68.
    Wallen, L.A.: Automated Proof Search in Non-Classical Logics. MIT Press (1990)Google Scholar
  69. 69.
    Whitehead, A.N., Russell, B.: Principia Mathematica, 1st edn. Cambridge University Press (1910–1913)Google Scholar
  70. 70.
    Wiles A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Wirth, C.-P.: Descente Infinie + Deduction. Logic J. IGPL 12, 1–96 (2004). http://www.ags.uni-sb.de/~cp/p/d
  72. 72.
    Wirth, C.-P.: lim+, δ +, and non-permutability of β-steps. SEKI-Report SR-2005-01 (ISSN 1437–4447). SEKI Publications, Saarland University (2006). Rev.edn. http://arxiv.org/abs/0902.3635. Thoroughly improved version is [76]
  73. 73.
    Wirth, C.-P.: Hilbert’s epsilon as an operator of indefinite committed choice. J. Appl. Logic 6, 287–317 (2008). doi:10.1016/j.jal.2007.07.009 Google Scholar
  74. 74.
    Wirth, C.-P.: Hilbert’s epsilon as an operator of indefinite committed choice. SEKI-Report SR-2006-02 (ISSN 1437–4447). SEKI Publications, Saarland University, rev. edn. (2010). http://arxiv.org/abs/0902.3749
  75. 75.
    Wirth, C.-P.: A simplified and improved free-variable framework for Hilbert’s epsilon as an operator of indefinite committed choice. SEKI Report SR-2011-01 (ISSN 1437–4447), SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D-28359 Bremen, Germany (2012). Rev. edn. http://arxiv.org/abs/1104.2444
  76. 76.
    Wirth, C.-P.: lim+, δ +, and Non-Permutability of β-Steps. J. Symbolic Comput. 47 (2012). doi:10.1016/j.jsc.2011.12.035. More funny version is [72]
  77. 77.
    Wirth, C.-P.: Human-oriented inductive theorem proving by descente infinie—a manifesto. Logic J. IGPL 20 (2012, to appear). doi:10.1093/jigpal/jzr048
  78. 78.
    Wirth, C.-P., Siekmann, J., Benzmüller, C., Autexier, S.: Jacques Herbrand: life, logic, and automated deduction. In: [23, vol. 5: Logic from Russell to Church, pp. 195–254] (2009)Google Scholar
  79. 79.
    Wirth, C.-P., Siekmann, J., Benzmüller, C., Autexier, S.: Lectures on Herbrand as a logician. SEKI-Report SR-2009-01 (ISSN 1437–4447), SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D-28359 Bremen, Germany (2011). Rev. edn. http://arxiv.org/abs/0902.4682

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations