Logica Universalis

, Volume 6, Issue 3–4, pp 339–409 | Cite as

Jean van Heijenoort’s Conception of Modern Logic, in Historical Perspective

Article

Abstract

I use van Heijenoort’s published writings and manuscript materials to provide a comprehensive overview of his conception of modern logic as a first-order functional calculus and of the historical developments which led to this conception of mathematical logic, its defining characteristics, and in particular to provide an integral account, from his most important publications as well as his unpublished notes and scattered shorter historico-philosophical articles, of how and why the mathematical logic, whose he traced to Frege and the culmination of its formative period in the incompleteness results of Gödel, became modern logic, as distinct from the traditional logic of Aristotle, and why and how the logistic tradition that led from Frege through Russell, rather than the algebraic tradition that led from De Morgan and Boole through Peirce and Schröder, came, in his view, to define modern logic.

Mathematics Subject Classification

Primary 03-03 01A61 0185 Secondary 03B05 03B10 03A05 

Keywords

History of logic van Heijenoort 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anellis, I.H.: Ontological commitment in ideal languages: semantic interpretations for logical positivism. Ph.D. thesis, Brandeis University (1977)Google Scholar
  2. 2.
    Anellis I.H.: Russell’s earliest reactions to Cantorian set theory, 1896–1900. In: Baumgartner, J.E., Martin, D.A., Shelah, S. (eds) Axiomatic Set Theory, Contemporary Mathematics, vol 31, pp. 1–11. American Mathematical Society, Providence (1984)CrossRefGoogle Scholar
  3. 3.
    Anellis, I.H.: Russell’s problems with the calculus. In: Binder, C. (ed.) Proceedings of the Austrian Symposium on History of Mathematics, Neuhofen an der Ybbes, pp. 124–128. Österreichische Gesellschaft der Geschichte der Wissenschaften, Vienna, 9–15 November 1986Google Scholar
  4. 4.
    Anellis I.H.: Bibliografía de Jean van Heijenoort. Mathesis 3, 85–88 (1987)MathSciNetGoogle Scholar
  5. 5.
    Anellis, I.H.: Russell’s problems with the calculus. In: Rabinovich, V.L. (ed.) Abstracts, LMPS ’87, Moscow, USSR, Eighth International Congress of Logic, Methodology and Philosophy of Science, vol. 3, §13, pp. 16–19. Academy of Sciences of the USSR, Moscow, 17–22 August 1987 (Revised version of [4])Google Scholar
  6. 6.
    Anellis I.H.: Russell’s earliest interpretation of Cantorian set theory, 1896–1900. Philos. Math, (2) 2, 1–31 (1987)MathSciNetMATHGoogle Scholar
  7. 7.
    Anellis I.H.: Bertrand Russell’s theory of numbers, 1896–1898. Epistemologia 10, 303–322 (1987)Google Scholar
  8. 8.
    Anellis I.H.: Russell and Engels: two approaches to a Hegelian philosophy of mathematics. Philos. Math. (2) 3, 151–179 (1987)MathSciNetGoogle Scholar
  9. 9.
    Anellis I.H.: Some unpublished papers of Jean van Heijenoort. Hist. Math. 15, 270–274 (1988)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Anellis, I.H.: La obra de Jean van Heijenoort en el campo de la lógica: sus aporttaciones a la teoría de la demonstración. Mathesis 5, 353–370 (1989) (English translation: [14])Google Scholar
  11. 11.
    Anellis, I.H.: The Löwenheim–Skolem theorem, theories of quantification, and proof theory. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic, pp. 71–83. Birkhäuser, Boston/Basel/Berlin (1991)Google Scholar
  12. 12.
    Anellis I.H.: Forty years of “unnatural” natural deduction and quantification: a history of first-order systems of natural deduction, from Gentzen to Copi. Modern Logic 2, 113–152 (1991)MathSciNetMATHGoogle Scholar
  13. 13.
    Anellis I.H.: Review of [334]. Hist. Math. 19, 228–229 (1992)Google Scholar
  14. 14.
    Anellis I.H.: A sketch of Jean van Heijenoort’s view of the history of modern logic: introduction to an unpublished paper. Modern Logic 2, 239–241 (1992)MathSciNetMATHGoogle Scholar
  15. 15.
    Anellis I.H.: Jean van Heijenoort’s contributions to proof theory and its history. Modern Logic 2, 312–335 (1992)MathSciNetMATHGoogle Scholar
  16. 16.
    Anellis I.H.: Review of [van Heijenoort 1976]. Modern Logic 2, 338–341 (1992)MathSciNetGoogle Scholar
  17. 17.
    Anellis, I.H.: Van Heijenoort: Logic and Its History in the Work and Writings of Jean van Heijenoort. Modern Logic Publishing, Ames (1994)Google Scholar
  18. 18.
    Anellis, I.H.: Peirce Rustled, Russell Pierced: how Charles Peirce and Bertrand Russell viewed each other’s work in logic, and an assessment of Russell’s accuracy and role in the historiography of logic. Modern Logic 5, 270–328 (1995); electronic version at: http://www.cspeirce.com/menu/library/aboutcsp/anellis/csp&br.htm
  19. 19.
    Anellis, I.H.: Tarski’s development of Peirce’s logic of relations. In: [153]. pp. 271–303 (1997)Google Scholar
  20. 20.
    Anellis, I.H.: Some views of Russell and Russell’s logic by his contemporaries. Rev. Modern Logic 10, 67–97 (2004–2005); electronic version: Some views of Russell and Russell’s logic by his contemporaries, with particular reference to Peirce, http://www.cspeirce.com/menu/library/aboutcsp/anellis/views.pdf
  21. 21.
    Anellis, I.H.: Van Heijenoort, Jean (1912–1986). In: Shook, J.R. (ed.) Dictionary of Modern American Philosophers, 1860–1960, vol. 4: R-Z, p. 2476, col. 1–p. 2479, col. 1. Thoemmes Press, Bristol (2005)Google Scholar
  22. 22.
    Anellis, I.H.: Evaluating Bertrand Russell: The Logician and His Work. Peirce Publishing, Fort Dodge (2006); 2nd, revised ed. Docent Press Chestnut Hill, forthcomingGoogle Scholar
  23. 23.
    Anellis I.H.: Russell and his sources for non-classical logics. Logica Universalis 3, 153–218 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Anellis, I.H.: Did the principia mathematica precipitate a “Fregean revolution”?, Russell J. Bertrand Russell Stud. 31, 131–150 (2011); simultaneous published in: Griffin, N., Linsky, B., Blackwell, K. (eds.) Principia Mathematica at 100. The Bertrand Russell Research Centre, McMaster University, Hamilton, Ont. P. 131–150 (2011)Google Scholar
  25. 25.
    Anellis, I.H.: How Peircean was the “Fregean” revolution in logic?, Logicheskie issledovaniya 18, in press (2012); an expanded version is available online at: http://www.cspeirce.com/menu/library/aboutcsp/anellis/csp-frege-revolu.pdf
  26. 26.
    Anellis, I.H., Houser, N.: The nineteenth century roots of universal algebra and algebraic logic: a critical-bibliographical guide for the contemporary logician. In: Andréka, H., Monk, J, D., Németi, I. (eds.) Colloquia Mathematica Societatis János Bolyai, vol. 54, pp. 1–36. Algebraic Logic, Budapest (Hungary), 1988 Elsevier Science/North-Holland, Amsterdam/London/New York (1991)Google Scholar
  27. 27.
    Angelelli, I. Studies on Gottlob Frege and Traditional Philosophy. D. Reidel Publishing Co., Dordrecht/Humanities Press, New York (1967)Google Scholar
  28. 28.
    Angelelli I.: Aristotle: Aristoteles Ars disserendi. Ex thypographia T. Brumennius, Pariis (1567)Google Scholar
  29. 29.
    Aspray, W., Kitcher, P. (eds): History and Philosophy of Modern Mathematics. University of Minnesota Press, Minneapolis (1988)Google Scholar
  30. 30.
    Avicenna: (Maḥmūd al-H̠aḍīrī; ‘Abd-al-Ḥalīm Muntas̠ir; Ibrāhīm Madkūr, eds.) aš- Šifā’ 1,3 al- Manṭiq: al-‘Ibāra = De l’interpretation (al-ibara). Al-Hai’a al-‘Āmma li-Šu’ūn al-Maṭābi‘ al-Amīrīya, Al-Qāhira (1970)Google Scholar
  31. 31.
    Avicenna: The Propositional Logic of Avicenna; A Translation from al-Shifa: al-Qiyas, with Introduction, Commentary and Glossary, by Nabil Shehaby. D. Reidel Publishing Co., Dordrecht (1973)Google Scholar
  32. 32.
    Badesa, C.: El teorema de Löwenheim en el marco de la teoría de relativos. Ph.D. thesis, University of Barcelona; published: Barcelona: Publicacións, Universitat de Barcelona. Barcelona (1991)Google Scholar
  33. 33.
    Badesa, C.: (Maudsley, M. trans.), The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton University Press, Princeton/Oxford (2004)Google Scholar
  34. 34.
    Baldwin, J.M. (ed): Dictionary of Philosophy and Psychology, vol. 2. Macmillan, New York (1902)Google Scholar
  35. 35.
    Barker J.: A Digest of Deductive Logic for the Use of Student. Metheuen & Co., London (1897)Google Scholar
  36. 36.
    Barnes, J.: A third sort of syllogism: Galen and the logic of relation. In: Sharples, R. W. (ed.) Modern Thinkers and Ancient Thinkers: The Stanley Victor Keeling Memorial Lectures at University College, London, 1981–1991, pp. 172–194. Westview Press, Boulder/UCL Press, London (1993)Google Scholar
  37. 37.
    Baynes T.S.: Who discovered the principle of quantification of the predicate?. Contemp. Rev. 22, 318–323 (1873)Google Scholar
  38. 38.
    Baynes T.S.: Mr. Herbert Spencer on Sir Wm. Hamilton and the quantification of the predicate. Contemp. Rev. 22, 796–798 (1873)Google Scholar
  39. 39.
    Bazhanov V.A.: C. S. Peirce’s influence on the logical work of N. A. Vasiliev. Modern Logic 3, 45–51 (1992)MathSciNetMATHGoogle Scholar
  40. 40.
    Beatty R.: Peirce’s development of quantifiers and of predicate logic. Notre Dame J. Formal Logic 10, 64–76 (1969)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Bednarowski W.: Hamilton’s quantification of the predicate. Proc. Aristot. Soc. 56, 217–240 (1956)Google Scholar
  42. 42.
    Beneke F.E.: Syllogismorum analyticorum origines et ordo naturalis. Mittler, Berlin (1839)Google Scholar
  43. 43.
    Beneke F.E.: System der Logik als Kunstlehre des Denkens I–II. Ferdinand Dümmler, Berlin (1842)Google Scholar
  44. 44.
    Bentham, E.: An Introduction to Logick, Scholastick and Rational. W. Jackson and J. Lester, Oxford (1773)Google Scholar
  45. 45.
    Bentham, G.: Outline of a New System of Logic with a Critical Examination of Dr. Whately’s ‘Elements of Logic’. Hunt and Clarke, London: (1827); reprinted: Thoemmes, Bristol (1990)Google Scholar
  46. 46.
    Bergmann G.: Pure semantics, sentences, and propositions. Mind 53, 238–257 (1944)CrossRefGoogle Scholar
  47. 47.
    Berry, G.D.W.: Peirce’s contributions to the logic of statements and quantifiers. In: Wiener, P.P., Young, F.H. (eds.) Studies in the Philosophy of Charles Sanders Peirce, pp. 153–165. Harvard University Press, Cambridge (1952)Google Scholar
  48. 48.
    Béziau J.-Y.: Review of [56]. Rev. Modern Logic 11, 155–161 (2007)Google Scholar
  49. 49.
    Bocheński J.M.: Notiones historiae logicae formalis. Angelicum 13, 109–123 (1936)Google Scholar
  50. 50.
    Bocheński, J.M.: Spitzfindigkeit. In: Festgabe an die Schweitzerkatholiken, pp. 334–352. Universitätsverlag, Freiberg (1954)Google Scholar
  51. 51.
    Boehner, P.: Medieval Logic: An Outline of Its Development from 1250 to c. 1400. Hyperion Press, Westport (1952)Google Scholar
  52. 52.
    Boole, G. An Investigation of the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities. Walton & Maberly, London (1854); reprinted: Dover Publishing Co., New York (1951)Google Scholar
  53. 53.
    Borga M., Palladino D.: Logic and foundations of mathematics in Peano’s school. Modern Logic 3, 18–44 (1992)MathSciNetMATHGoogle Scholar
  54. 54.
    Bowen, F.: A Treatise on Logic, or the Laws of Pure Thought, comprising both the Aristotelian and Hamiltonian Analysis of Logical Forms, and Some Chapters of Applied Logic, 8th edn. John Ally, Boston (1874)Google Scholar
  55. 55.
    Bowne, G.D.: 1966. The Philosophy of Logic, 1880–1908. The Hague, Mouton (1966)Google Scholar
  56. 56.
    Brady, G. From Peirce to Skolem: A Neglected Chapter in the History of Logic. North-Holland/Elsevier Science, Amsterdam/New York (2000)Google Scholar
  57. 57.
    Brown, S.F.: Walter Burleigh’s Treatise De suppositionibus and Its Influence on William of Ockham. St. Bonaventure University, The Franciscan Institute, St. Bonaventure (1972)Google Scholar
  58. 58.
    Burks, A.W.: Peirce’s conception of logic as a normative science. Philos. Rev. 52, 187–193 (1943); electronic version at: http://www.jstor.org/stable/2180584 Google Scholar
  59. 59.
    Burleigh, W. (Spade, P. V., transl.), Walter Burley: from the beginning of his Treatise on the Kinds of Supposition (De suppositionibus). Topoi 16, 95–102 (1977)Google Scholar
  60. 60.
    Buzzetti D.: La teoria della quantificazione del predicato di William Hamilton e la rinascita della logica. Rivista di Filosofia 64, 295–337 (1973)Google Scholar
  61. 61.
    Byrnes J.: Peirce’s first-order logic of 1885. Transactions of the Charles S. Peirce Society 34, 949–976 (1988)Google Scholar
  62. 62.
    Carnap. R.: Abriß der Logistik. Springer, Vienna (1929)Google Scholar
  63. 63.
    Carnap R.: Logische Syntax der Sprache. Julius Springer, Berlin (1934)MATHGoogle Scholar
  64. 64.
    Carnap, R.: (Smeaton, A., trans.), The Logical Syntax of Language. Routledge & Kegan Paul, London (1937)Google Scholar
  65. 65.
    Carus P.C.: Nature of logical and mathematical thought. The Monist 20, 33–75 (1910)Google Scholar
  66. 66.
    Carus P.C.: Non-Aristotelian logic. The Monist 20, 158–159 (1910)Google Scholar
  67. 67.
    Cocchiarella N.B.: Predication versus membership in the distinction between logic as language and logic as calculus. Synthèse 77, 37–72 (1988)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Copi I.M.: The “intentionality” of formal logic. Philosophy and Phenomenological Research 11, 366–372 (1951)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Copi, I.M.: Introduction to Logic. Macmillan, New York (1953; 2nd edn., 1961; 3rd edn., 1968; 4th edn., 1972)Google Scholar
  70. 70.
    Copi, I.M.: Symbolic Logic. Macmillan, New York (1954; 2nd printing, 1956; 3rd printing, 1958; 6th printing, 1961; 2nd edn., 1965; 3rd edn., 1967; reprinted 1970; 4th edn., 1973; 5th edn., 1969)Google Scholar
  71. 71.
    Copi I.M.: The Burali-Forti paradox. Philos Sci 25, 281–286 (1958)CrossRefGoogle Scholar
  72. 72.
    Copi I.M.: Artificial language. In: Henle, P. (ed) Language Thought and Culture, pp. 96–120. University of Michigan Press, Ann Arbor (1958)Google Scholar
  73. 73.
    Copi, I.M.: The Theory of Logical Types. London: Routledge & Kegan Paul, London (1971)Google Scholar
  74. 74.
    Copi I.M.: Logic versus illogic. Int. Logic Rev. 19(20), 111–113 (1979)Google Scholar
  75. 75.
    Copi, I.M., Gould, J.A. (eds.): Readings on Logic. NMacmillan, New York (1964; 2nd ed., 1971)Google Scholar
  76. 76.
    Copi, I.M., Gould, J.A. (eds): Contemporary Readings in Logical Theory. Macmillan, New York (1969)Google Scholar
  77. 77.
    Dedekind, R. 1888. Was sind und was sollen die Zahlen? F. Vieweg Braunschweig (1888; 2te Aufl., 1893); reprinted: (Fricke, R., Nöther, E., Ore, Ø., Hsg.), Richard Dedekind, Gesammelte mathematische Werke, Bd. III, pp. 335–390. Braunschweig, Vieweg (1930–1932)Google Scholar
  78. 78.
    De Morgan, A.: On the syllogism, I: on the structure of the syllogism. Trans. Cambridge Philos. Soc. 8, 379–408 (1846); reprinted: [79], 1–21Google Scholar
  79. 79.
    De Morgan, A.: (Heath, P., ed.) On the Syllogism and Other Logical Writings. Yale University Press, New Haven (1966)Google Scholar
  80. 80.
    Dipert, R.: Individuals and extensional logic in Schröder’s Vorlesungen über die Algebra der Logik. Modern Logic 1, 140–159 (1990/91)Google Scholar
  81. 81.
    Dipert, R.: Peirce’s deductive logic: its development, influence, and philosophical significance. In: Misak, C.J. (ed.) The Cambridge Companion to Peirce. Cambridge University Press, Cambridge. pp. 287–324 (2004)Google Scholar
  82. 82.
    Dreben, B., Denton, J.: 1970. Herbrand-style consistency proofs. In: Myhill, J.R., Kino, A., Vesley, R.E. (eds.) Intuitionism and Proof Theory. Proceedings of the International Conference Intuitionism and Proof Theory, Buffalo, 1968, pp. 419–433. Elsevier North-Holland, Amsterdam (1970)Google Scholar
  83. 83.
    Dreben, B., van Heijenoort, J.: Introductory notes to: [115,116,117,118]. In: [119], pp. 44–59 (1986)Google Scholar
  84. 84.
    Dürr, K.: Beleuchtung von Anwendungen der Logistik in Werken von Rudolf Carnap. In: Kazemier, B.H., Vuysje, D. (eds.) Logic and Language: Studies Dedicated to Professor Rudolf Carnap on the Occasion of His Seventieth Birthday, pp. 195–205. D. Reidel Publishing Co., Dordrecht (1962)Google Scholar
  85. 85.
    Edwards, P. (ed): Encyclopedia of Philosophy. Macmillan, New York (1963)Google Scholar
  86. 86.
    Enea, M.R., Saeli, D. Sistemi numerici: un’introduzione. ARCANE editrice S.r.l., Rome (2009)Google Scholar
  87. 87.
    Fang J.: The illogical in the logical, Int. Logic Rev. 17-18, 111–120 (1978)Google Scholar
  88. 88.
    Fang J.: Logic Today—Basics and Beyond. Paedeia Press, Memphis (1979)Google Scholar
  89. 89.
    Feferman, A.B.: Politics, Logic, and Love: The Life of Jean van Heijenoort. A K Peters, Wellesley (1993); reissued in paperback as: From Trotsky to Gödel: The Life of Jean van Heijenoort. A K Peters, Natick (2001)Google Scholar
  90. 90.
    Feferman S.: Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic 27, 259–316 (1962)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Feferman, S.: Systems of predicative analysis. J. Symbolic Logic 29 (1964), 1–30, 33 (1968), 193–220 (1964-68)Google Scholar
  92. 92.
    Feferman, S.: Letter to Irving H. Anellis, October 15, 1986 (1986)Google Scholar
  93. 93.
    Feferman, S.: Appendix: Jean van Heijenoort’s scholarly work, 1948–1986. In: [89], 371–390 (1993)Google Scholar
  94. 94.
    Fenyö S.: Alle origini dell’estensionalismo contemporaneo: la logica delle classi di Schröder. Rivista di Filosofia 64, 123–173 (1973)Google Scholar
  95. 95.
    Fisch, M.H., Turquette, A.R.: Peirce’s triadic logic. Trans. Charles S. Peirce Soc. 2, 71–85 (1966); reprinted: Ketner, K.L., Kloesel, C.J.W. (eds.) Peirce, Semeiotic, and Pragmatism: Essays by Max H. Fisch. Indiana University Press, Bloomington. pp. 171–183 (1986)Google Scholar
  96. 96.
    Fiske, T.S. The beginnings of the American Mathematical Society. In: Peter Duren, P., Askey, R.A., Merzbach, U.C. (eds.) A Century of Mathematics in America, Part I, pp. 13–17. American Mathematical Society, Providence (1988)Google Scholar
  97. 97.
    Floyd, J.: Frege, semantics, and the double definition stroke. In: Biletzki, A., Matar, A. (eds.) The Story of Analytic Philosophy: Plot and Heroes, pp. 141–166. Routledge, London/New York (1988)Google Scholar
  98. 98.
    Fogelin R.J.: Hamilton’s quantification of the predicate. Philos. Quart. 26, 217–228 (1976)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Verlag von Louis Nebert Halle (1879); English translation by S. Bauer-Mengelberg in [289], pp. 5–82Google Scholar
  100. 100.
    Frege, G.: Booles rechnende Logik und die Begriffsschrift (1880/1881); published: [110], 9–52Google Scholar
  101. 101.
    Frege, G.: Booles logische Formelsprache und die Begriffsschrift (1882); published: [110], 53–59Google Scholar
  102. 102.
    Frege, G.: Über den Zweck der Begriffsschrift. Jenaischer Zeitschrift für Naturwissenschften 16, Suppl.-Heft II, 1–10 (1883)Google Scholar
  103. 103.
    Frege G.: Grundlagen der Arithmetik. Verlag von Wilhelm Koebner, Breslau (1884)Google Scholar
  104. 104.
    Frege G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik (N.F.) 100, 25–50 (1892)Google Scholar
  105. 105.
    Frege G.: Über Begriff und Gegenstand. Vierteljahrsschrift für wissenschaftliche Philosophie 16, 192–205 (1892)Google Scholar
  106. 106.
    Frege, G.: Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, Bd. I. H. Pohle, Jena (1893)Google Scholar
  107. 107.
    Frege G.: Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik. Archiv für systematische Philosophie 1, 433–456 (1895)Google Scholar
  108. 108.
    Frege G.: Über die Begriffsschrift des Herrn Peano und meine einige, Verhandlungen der Königliche Sächsische Gesellschaft der Wissenschaften zu Leipzig. Math. Phys. Klasse 48, 362–368 (1896)Google Scholar
  109. 109.
    Frege, G.: Letter to Bertrand Russell, 22 June 1902 (1902). English translation by Beverly Woodward, with introduction by J. van Heijenoort, in [289], 126–128.Google Scholar
  110. 110.
    Frege, G.: (Hermes, H., Kambartel, F., Kaulbach, F., Hsg.), Nachgelassene Schriften. F. Meiner Verlag, Hamburg (1969; 2nd enlarged ed., 1983)Google Scholar
  111. 111.
    Freudenthal, H.: David Hilbert. In: Gillispie, C.C. (ed.) Dictionary of Scientific Biography, vol. 6, pp. 388–395. Scribner, New York (1973)Google Scholar
  112. 112.
    Gana F.: Peirce e Dedekind: la definizione di insiemi finito. Hist. Math. 12, 203–218 (1985)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 170–210, 405–431 (1934)Google Scholar
  114. 114.
    Gersonides. (Manekin, C. H., trans. & ed.) The Logic of Gersonides: A Translation of Sefer ha-Heqqesh ha-yashar (The Book of the Correct Syllogism) of Rabbi Levi ben Gershom. Kluwer, Dordrecht (1992)Google Scholar
  115. 115.
    Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, University of Vienna (1929); reprinted, with English translation, in: [119], pp. 60–101.Google Scholar
  116. 116.
    Gödel, K.: Die Vollständigkeit der Axiome des logischen Kalküls. Monatsheft für Mathematik und Physik 37, 349–360 (1930); English translations by Stefan Bauer-Mengelberg in [289], 582–591; reprinted, with an English translation, in: [119], pp. 102–123.Google Scholar
  117. 117.
    Gödel, K.: Über die Vollständigkeit des Logikkalküls. Die Naturwissenschaften 18, 1068 (1930) German, with English translation, in: [119], pp. 124–125Google Scholar
  118. 118.
    Gödel, K.: Über die formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme, I, Monatshefte für Mathematik und Physik 38, 173–198 (1931); English translation: [289], 596–616; reprinted, with English translation, in: [119], pp. 144–195Google Scholar
  119. 119.
    Gödel, K.: (Feferman, S., Dawson, Jr., J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., eds.) Collected Works, vol. I. Publications 1929–1936. Oxford University Press, Oxford/New York (1986)Google Scholar
  120. 120.
    Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G. H., Solovay, R. M., van Heijenoort, J., eds.) Collected Works, vol. II. Publications 1938–1974. Oxford University Press, Oxford/New York (1990)Google Scholar
  121. 121.
    Gödel, K.: (Feferman, S., Dawson, J.W., Goldfarb, W.D., Parsons, C., Solovay, R.M., eds.) Collected Works, vol. III. Unpublished Essays and Lectures. Oxford University Press Oxford/New York (1995)Google Scholar
  122. 122.
    Gödel, K.: (Feferman, S., Dawson, J.W., Goldfarb, W.D., Parsons, C., Sieg, W., eds.) Collected Works, vol. IV. Selected Correspondence, A-G. Oxford University Press, Oxford/New York (2003)Google Scholar
  123. 123.
    Gödel, K.: (Feferman, S., Dawson, J.W., Goldfarb, W.D., Parsons, C., Sieg, W., eds.) Collected Works, vol. V. Selected Correspondence, H-Z. Oxford University Press, Oxford/New York (2003)Google Scholar
  124. 124.
    Goldfarb W.D.: Logic in the twenties: the nature of the quantifier. J. Symbol. Logic 44, 351–368 (1979)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Grattan-Guinness I.: Bertrand Russell on his paradox and the multiplicative axiom. An unpublished letter to Philip Jourdain. J. Philos Logic. 1, 103–110 (1972)MathSciNetMATHGoogle Scholar
  126. 126.
    Grattan-Guinness I.: Wiener on the logics of Russell and Schröder: an account of his doctoral thesis, and of his discussion of it with Russell. Ann. Sci. 32, 103–132 (1975)MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Grattan-Guinness, I.: Russell—Dear Jourdain: A Commentary on Russell’s Logic, Based on his Correspondence with Philip Jourdain. Duckworth, London (1977)Google Scholar
  128. 128.
    Griffin N.: Russell on the nature of logic (1903–1913). Synthèse 45, 117–188 (1980)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Haack, S., Lane, R. (eds): Pragmatism, Old and New: Selected Writings. Prometheus, Amherst (2006)Google Scholar
  130. 130.
    Hacker E.A.: Number system for immediate inferences and the syllogism in Aristotelian logic. Notre Dame J. Formal Logic 8, 318–320 (1967)MATHCrossRefGoogle Scholar
  131. 131.
    Hacker E.A., Parry W.T.: Pure numerical Boolean syllogisms. Notre Dame J. Formal Logic 8, 321–324 (1967)MATHCrossRefGoogle Scholar
  132. 132.
    Halsted G.B.: Boole’s logical method. J. Specul. Philos. 12, 81–91 (1878)Google Scholar
  133. 133.
    Hamilton, W.S.: Prospectus on a new analytic of logical forms. Privately printed (1846); published as Appendix V, in: [134], pp. 509–559Google Scholar
  134. 134.
    Hamilton, W.S.: (Mansel, H.M., Veitch, J. eds.) Lectures on Logic, vol. 2 of Lectures on Metaphysics and Logic. Blackwood and Sons, London/Gould and Lincoln, Boston/Sheldon (1860)Google Scholar
  135. 135.
    Harley, R.: Additional remarks appended to [191], 36–40 (1884)Google Scholar
  136. 136.
    Hartimo, M.: 2006. Logic as a universal medium or logic as a calculus? Husserl and the presuppositions of “the ultimate presupposition of twentieth century philosophy”. South. J. Philos. 44, 569–580 (2006)Google Scholar
  137. 137.
    Hasnawi, A.: 2008. Avicenna on the quantification of the predicate (with an appendix on [Ibn Zur‘a]). In: Rahman, S., Street, T., Tahiri, H. (eds.) The Unity of Science in the Arabic Tradition: Logic, Epistemology, and the Unity of Science, pp. 295–328. Springer Netherlands, Dordrecht (2008)Google Scholar
  138. 138.
    Hawkins, B.S.: Frege and Peirce on Properties of Sentences in Classical Deductive Systems. Ph.D. thesis, University of Miami (1971)Google Scholar
  139. 139.
    Hawkins B.S.: A compendium of C. S. Peirce’s 1866–1885 work. Notre Dame J. Formal Logic 16, 109–115 (1975)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Hawkins, B.S.: Peirce’s and Frege’s systems of notation. In: Ketner, K.L., Ransdell, J.M., Eisele, C., Fisch, M.H., Hardwick, C.S. (eds.) Proceedings of the C.S. Peirce Bicentennial International Congress, 1976, pp. 381–389. Texas Tech Press, Lubbock (1981)Google Scholar
  141. 141.
    Hawkins B.S.: Peirce and Frege: a question unanswered. Modern Logic 3, 376–383 (1993)MathSciNetMATHGoogle Scholar
  142. 142.
    Hawkins, B.S.: Peirce and Russell: the history of a neglected ‘controversy’. In: [153]. pp. 111–146 (1997)Google Scholar
  143. 143.
    Henry D.P.: Ockham, ‘suppositio’, and modern logic. Notre Dame J. Formal Logic 5, 290–292 (1964)MathSciNetCrossRefGoogle Scholar
  144. 144.
    Herbrand, Jacques. 1930. Recherches sur la théorie de la démonstration. Ph.D. thesis, University of Paris (1930), reprinted: Prace Towarzystwa Naukowego Warszawskiego, Wydział III, 33 (1930); reprinted: [145], 35–153; English translations: [146], 46–202; translation of Chapt. 5 in [289], 529–581.Google Scholar
  145. 145.
    Herbrand, J.: (van Heijenoort, J., éd.), Écrits logiques. Presses Universitaires de France, Paris (1968)Google Scholar
  146. 146.
    Herbrand, J.: (Goldfarb, W.D., trans. & ed.) Logical Writings. Harvard University Press, Cambridge (1971)Google Scholar
  147. 147.
    Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik. Springer-Verlag, Berlin (1928); 2te Aufl., 1938); reprinted: Dover Publications, New York (1946)Google Scholar
  148. 148.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik. Springer Verlag, Berlin, Bd. I, 1934; Bd. II, 1939 (1934–1939)Google Scholar
  149. 149.
    Hintikka, J.: On the development of the model-theoretic viewpoint in logical theory, Synthèse 77, 1–36 (1988); reprinted in: [150], pp. 104–139.Google Scholar
  150. 150.
    Hintikka, J.: Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  151. 151.
    Hintikka M.B., Hintikka J.: Investigating Wittgenstein. Basil Blackwell, Oxford (1986)Google Scholar
  152. 152.
    Hoffmann, F.: Grundzüge einer Geschichte des Begriffs der Logik in Deutschland von Kant bis Baader. Hermann Bethmann, Leipzig (1851)Google Scholar
  153. 153.
    Houser, N., Roberts, D.D., Van Evra, J.W. (eds.) Studies in the Logic of Charles Sanders Peirce. Indiana University Press, Bloomington/Indianapolis (1997)Google Scholar
  154. 154.
    Husserl E.: Der Folgerungscalcul ind die Inhaltslogik. Vierteljahrsschrift für wissenschaftliche Philosophie 15, 168–189 (1891)Google Scholar
  155. 155.
    Husserl E.: Antwort auf die vorstehende. Erwiderung‘ der Herrn Voigt, Vierteljahrsschrift für wissenschaftliche Philosophie 17, 508–511 (1893)Google Scholar
  156. 156.
    Husserl, E.: Logische Untersuchungen, Bd. I. Max Niemeyer Verlag, Halle a. S. (1900), Bd. II. Max Niemeyer Verlag, Tübingen (1901) (1900–1901)Google Scholar
  157. 157.
    Jevons W.S.: Who discovered the quantification of the predicate?. Contemp. Rev. 21(May), 821–824 (1873)Google Scholar
  158. 158.
    Jungius, J.: Logica Hamburgensis: hoc est Institutiones logicae in usum schol. Hamburg. conscriptæ & sex libri comprehensæ autore Joachimo Jungio. Sumptibus Bartholdi Offermans literis Rebenlinianis, Hamburg (1638; editio II 1681); (Rudolf W. Meyer, Hsg.), J. J. Augustin, Hamburg (1957)Google Scholar
  159. 159.
    Kant, I.: Die falsche Spitzfindigkeit der vier syllogistischen Figuren erweisen. J. J. Kanter, Königsberg (1763)Google Scholar
  160. 160.
    Kant, I.: (Jäsche, G. B., Hsg.), Immanuel Kants Logik. Ein Handbuch zu Vorlesungen. Friedrich Nicolovius (1800)Google Scholar
  161. 161.
    Kant, I.: (Heidemann, I., Hsg.) Kritik der reinen Vernunft. Reclam, Stuttgart (1966) [Combines the first and second editions: Critik der reinen Vernunft]. Johann Friedrich Hartknoch, Riga (1781; Zweyte hin und wieder verbesserte Auflage. 1787)Google Scholar
  162. 162.
    Kennedy H.C.: Nine letters from Giuseppe Peano to Bertrand Russell. Hist. Philos. Logic 13, 205–220 (1975)Google Scholar
  163. 163.
    Kitcher, P., Aspray, W.: An opinionated introduction. In: [29], pp. 3–57 (1988)Google Scholar
  164. 164.
    Köhnke, K.C.: 1986. Entstehung und Aufstieg des Neukantianismus. Surhkamp, Frankfurt am Main: (1986); English translation: (Hollingdale, R. J., trans.), The Rise of Neo-Kantianism: German Academic Philosophy between Idealism and Positivism. Cambridge University Press, Cambridge/Port Chester/Melbourne/Sydney (1991)Google Scholar
  165. 165.
    Kolmogorov, A.N.: O printsipi ‘tertium non datur’, Matematicheskii sbornik 32, 646–667 (1925); English translation: On the principle of excluded middle, by J. van Heijenoort, in: [289a], 414–437Google Scholar
  166. 166.
    Kolmogorov, A.N.: Letter to John van Heijenoort, 12 November 1963; ts., 1p. [in Russian]. Van Heijenoort Archives, Box 3.8/86-33/12 (previously labeled Box 12); copy in Anellis private archivesGoogle Scholar
  167. 167.
    Korte T.: Frege’s Begriffsschrift as a lingua characteristica. Synthèse 174, 283–294 (2010)MathSciNetMATHCrossRefGoogle Scholar
  168. 168.
    Kusch, M.: Language as Calculus vs. Language as Universal Medium: A Study in Husserl, Heidegger, Gadamer. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  169. 169.
    Ladd-Franklin, C. Methods of. . . ”; unidentified ms., 1p., n.d. ca. 1913, re: Whitehead & Russell in Principia on Peirce & Schröder, from the Ladd-Frankin Papers of Rare Book and Manuscript Library, Columbia University (ca. 1913)Google Scholar
  170. 170.
    Laita L.M.: Influences on Boole’s logic: the controversy between William Hamilton and Augustus De Morgan. Ann. Sci. 36, 45–65 (1979)MathSciNetMATHCrossRefGoogle Scholar
  171. 171.
    Lane R.: Peirce’s triadic logic revisited. Trans. Charles S. Peirce Soc. 35, 284–311 (1999)Google Scholar
  172. 172.
    Leibniz, G.W.: (Parkinson, G. H. R., ed. & trans.), Leibniz, Logic Papers. Clarendon Press, Oxford (1966)Google Scholar
  173. 173.
    Linsky, B.: Was the axiom of reducibility a principle of logic?. Russell J. Bertrand Russell Stud. 10, 125–140 (1990–1991)Google Scholar
  174. 174.
    Löwenheim, L.: Über Möglichkeiten im Relativkalkul, Mathematische Annalen 76, 447–470 (1915); English translation by S. Bauer-Mengelberg in [289], 228–251Google Scholar
  175. 175.
    Łukasiewicz, J.: Z historii logiki zdań, Przegląd filozofi 37, 417–437 (1934)Google Scholar
  176. 176.
    Łukasiewicz, J.: Zur Geschichte der Aussagenlogik, Erkenntnis 5, 111–131 (1935); German of [175]; English translation: in [177], 197–217Google Scholar
  177. 177.
    Łukasiewicz, J.: (Borkowski, L., ed., trans.), Selected Works. North-Holland, Amsterdam (1970)Google Scholar
  178. 178.
    Mahnke, D.: Von Hilbert zu Husserl: Erste Einführung in die Phänomenologie, besonders des formalen Mathematik, Unterrichtsblätter 29 (3/4), sekt. Forschung und Schule, 34–37 (1923); English translation: (D.L. Boyer, with a preface by J.C. Webb), Studies in History and Philosophy of Science 8, 71–84 (1976)Google Scholar
  179. 179.
    Martin, R.M. 1976. On individuality and quantification in Peirce’s published logic papers, 1867–1885, Transactions of the Charles S. Peirce Society 12, 231–245 (1976); reprinted as: Individuality and quantification in Peirce’s published logic papers, 1867–1885. In: Martin, R.M. (eds.) Peirce’s Logic of Relations and Other Studies, pp. 24–45. Foris Publications, Dordrecht/Cinnaninson (1980)Google Scholar
  180. 180.
    Matthews G.B.: Suppositio and Quantification in Ockham. Noûs 7, 13–24 (1973)MathSciNetCrossRefGoogle Scholar
  181. 181.
    McKinley, R.: A sequent calculus demonstration of Herbrand’s theorem, Computational Interpretation of Proofs. Paris (2007); preprint (corrected, 2010), http://arxiv.org/abs/1007.3414 .
  182. 182.
    McOuat, G.H., & Varma, C.S.: Bentham’s logic. In: Gabbay, D.M., Woods, J. (eds.) British Logic in the Nineteenth Century, Handbook of the History of Logic, vol. 4, pp. 1–32. Elsevier North-Holland, Amsterdam (2000)Google Scholar
  183. 183.
    Mitchell, O.H.: On a new algebra of logic. In: [216], pp. 72–106 (1883)Google Scholar
  184. 184.
    Moore G.H.: Review of second printing of [289]. Hist. Math. 4, 468–471 (1977)CrossRefGoogle Scholar
  185. 185.
    Moore, G.H.: A house divided against itself: the emergence of first-order logic as the basis for mathematics. In: Phillips, E.R. (ed.) Studies in the History of Mathematics, pp. 98–136. Mathematics Association of America, Washington (1987)Google Scholar
  186. 186.
    Moore, G.H.: The emergence of first-order logic. In: [29], pp. 95–138 (1988)Google Scholar
  187. 187.
    Moore G.H.: Reflections on the interplay between mathematics and logic. Modern Logic 2, 281–311 (1992)MathSciNetMATHGoogle Scholar
  188. 188.
    Moore G.H.: Hilbert and the emergence of modern mathematical logic. Theoria (Segunda Épocha) 12, 65–90 (1997)MATHGoogle Scholar
  189. 189.
    Mosselmans B.: Aristotle’s logic and the quest for the quantification of the predicate. Foundations of Science 13, 195–198 (2008)MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    Mostowski A.: Review of [289]. Synthèse 18, 302–305 (1968)CrossRefGoogle Scholar
  191. 191.
    Murphy J.J.: On the quantification of predicates and on the interpretation of Boole’s logical symbols. Proc. Literary Philos. Soc. Manchester 23, 33–36 (1884)Google Scholar
  192. 192.
    Nasim, O.W. Bertrand Russell and the Edwardian Philosophers: Constructing the World. Palgrave Macmillan, Basingstoke (2008)Google Scholar
  193. 193.
    Nidditch P.H.: Peano and the recognition of Frege. Mind 72, 103–110 (1963)CrossRefGoogle Scholar
  194. 194.
    Padoa, A.: La logique déductive dans la dernière phase de développement, Revue de Métaphysique et de Morale 19 (1911), 828–883, 20 (1912), 48–67, 207–231 et de Morale 19 (1911), 828–883, 20 (1912), 48–67, 207–231 (1911–1912); reprinted: Padoa, A. La logique déductive dans la dernière phase de développement, with a preface by G. Peano. Gauthier-Villars, Paris (1912)Google Scholar
  195. 195.
    Parkinson, G.H.R.: (ed. & trans.), Introduction. In: [172]. pp. ix–lxv (1966)Google Scholar
  196. 196.
    Parsons, T.: Supposition as quantification versus supposition as global quantificational effect, ts., 95pp. (1995); published in part: Topoi 16 (1997) 41–63Google Scholar
  197. 197.
    Peano, G.: Arithmetices principia, nova methodo exposita. Bocca, Torino (1889); English translations in: [289], 83–97Google Scholar
  198. 198.
    Peano G.: Principii di logica matematica. Rivista i Matematica 1, 1–10 (1891)Google Scholar
  199. 199.
    Peano, G.: Formole di logica matematica. Rivista di Matematica 1, 24–31, 182–184 (1891)Google Scholar
  200. 200.
    Peano, G.: Notations de la logique mathématique (Introduction au formulaire de mathématiques). Guadagnini, Torino (1894)Google Scholar
  201. 201.
    Peano G.: Studii di logica matematica. Atti della Reale Accademia delle Scienze di Torino 32, 565–583 (1897)MATHGoogle Scholar
  202. 202.
    Peano, G.: Formulaire de mathématiques, t. 2, §1: Logique mathématique. Bocca, Torino (1897)Google Scholar
  203. 203.
    Peano, G.: Formulaire de Mathématiques, t. 2, §2. Bocca, Torino (1898)Google Scholar
  204. 204.
    Peckhaus, V.: Friedrich Eduard Beneke und die Quantifikation des Prädikats, Arbeitsberichte, Institut für Philosophie der Universität Erlangen-Nürnberg nr. 14, 3–10 (1987)Google Scholar
  205. 205.
    Peckhaus, V.: Hermann Ulrici und die Aufnahme der englischen Algebra der Logik in Deutschland”. Arbeitsberichte nr. 42 (Juli), 3–45 (1989)Google Scholar
  206. 206.
    Peckhaus, V.: Ernst Schröder und die “pasigraphischen Systeme” von Peano und Peirce. Modern Logic 1, 174–205 (1990/91)Google Scholar
  207. 207.
    Peckhaus, V.: Hermann Ulrici (1806–1884). Der Hallesche Philosoph und die englische Algebra der Logik. Hallescher Verlag, Halle/Saale (1995)Google Scholar
  208. 208.
    Peckhaus, V.: Calculus ratiocinator vs. characteristica universalis? The two traditions in logic, revisited. Hist. Philos. Logic 25, 3–14 (2004); available online: http://kw.uni-paderborn.de/fileadmin/kw/institute/Philosophie/Per-sonal/Peckhaus/Texte_zum_Download/twotraditions.pdf
  209. 209.
    Peckhaus, V.: Algebra of logic, quantification theory, and the square of opposition; http://kw.uni.paderborn.de/fileadmin/kw/institute/Philosophie/Personal/Peckhaus/Texte_zum_Download/alquant.pdf (2010)
  210. 210.
    Peirce, C.S.: The Charles S. Peirce Papers. Manuscript collection in the Houghton Library, Harvard University (1849–1914). (Unpublished items designated “RC”, with manuscript number (designated “MS #”) according to [245] as reorganized by the Peirce Edition Project.)Google Scholar
  211. 211.
    Peirce, C.S.: On an improvement in Boole’s calculus of logic (Paper read on 12 March 1867). Proc. Am. Acad. Arts Sci. 7, 250–261 (1868)Google Scholar
  212. 212.
    Peirce, C.S.: Educational Text-Books, II, The Nation 14 (April 11), 244–246 (1872); reprinted: [225], pp. 46–51.Google Scholar
  213. 213.
    Peirce C.S.: On the algebra of logic. Am. J. Math. 3, 15–57 (1880)MathSciNetCrossRefGoogle Scholar
  214. 214.
    Peirce C.S.: On the logic of number. Am. J. Math. 4, 85–95 (1881)MathSciNetCrossRefGoogle Scholar
  215. 215.
    Peirce, C.S.: The logic of relatives. In: [216], pp. 187–203 (1883)Google Scholar
  216. 216.
    Peirce, C.S. (ed.): Studies in Logic by the Members of the Johns Hopkins University. Little, Brown & Co., Boston (1883; reprinted, with an introduction by Max Harold Fisch and a preface by A. Eschbach. Amsterdam: John Benjamins Publishing Co., 1983)Google Scholar
  217. 217.
    Peirce C.S.: On the algebra of logic: a contribution to the philosophy of notation. Am. J. Math. 7, 180–202 (1885)MathSciNetCrossRefGoogle Scholar
  218. 218.
    Peirce, C.S. (attributed): Review of Schröder‘s Vorlesungen über die Algebra der Logik, I, The Nation (August 13 1891), 12 (1891); reprinted: [Peirce 1975], 110–112Google Scholar
  219. 219.
    Peirce, C.S. (attributed): Review of Schröder’s Algebra und Logik der Relative (1895), Vorlesungen über die Algebra der Logik, The Nation 62, 330–331 (1896); reprinted: [227], pp. 132–133.Google Scholar
  220. 220.
    Peirce, C.S.: Modality. In: [34], pp. 89–93 (1902)Google Scholar
  221. 221.
    Peirce, C.S.: Necessary and Necessity. In: [34], pp. 143–145 (1902)Google Scholar
  222. 222.
    Peirce, C.S.: Vague. In: [34], pp. 748 (1902)Google Scholar
  223. 223.
    Peirce, C.S.: Review of [322] and [249], The Nation 77 (15 October), 308–309 (1903); reprinted: [226], pp. 157–159Google Scholar
  224. 224.
    Peirce, C.S.: On the system of existential graphs considered as an instrument for the investigation of logic; RC MS #499 (1906); in: [210]Google Scholar
  225. 225.
    Peirce, C.S.: (Ketner, K.L., Cook, J.E., compilers and annotators), Charles Sanders Peirce: Contributions to ‘The Nation’, Part One: 1869–1893. Texas Tech Press, Lubbock (1975)Google Scholar
  226. 226.
    Peirce, C.S.: (Hardwick, C.S., ed.) Semiotic and significs: the correspondence between Charles S. Peirce and Victoria Lady Welby. Indiana University Press, Bloomington (1977)Google Scholar
  227. 227.
    Peirce, C.S.: (Ketner, K.L., Cook, J.E., compilers and annotators), Charles Sanders Peirce: Contributions to ‘The Nation’, Part Two: 1894–1900. Texas Tech Pres, Lubbock (1978)Google Scholar
  228. 228.
    Petrus Hispanus. (Bocheński, I.M., ed.) Summulae logicales magistri Petri Hispani quas e codice manuscripto Reg. Lat. 1205. Marietti, Turin (1947)Google Scholar
  229. 229.
    Prantl, C.: Geschichte der Logik im Abendlande. Bd. I. Leipzig: S. Hirzel, Leipzig (1855); reprinted: Akademische Druck- und Verlagsanstalt, Graz (1955)Google Scholar
  230. 230.
    Pulkkinen, J.: The Threat of Logical Mathematism: A Study on the Critique of Mathematical Logic in Germany at the Turn of the 20th Century. Peter Lang, Frankfurt/Berlin/Bern/New York/Paris/Vienna (1994)Google Scholar
  231. 231.
    Pulkkinen, J.: Thought and Logic: The Debates between German-Speaking Philosophers and Symbolic Logicians at the Turn of the 20th Century. Peter Lang, Frankfurt/Berlin/Bern/Bruxelles/Oxford/New York/Paris/Vienna (2005)Google Scholar
  232. 232.
    Putnam H.: Peirce the logician. Hist. Math. 9, 290–301 (1982)MathSciNetMATHCrossRefGoogle Scholar
  233. 233.
    Quine, W.V.: Truth by convention. In: Lee, O.H. (ed.) Philosophical Essays for A. N. Whitehead, pp. 90–124. Longmans, New York (1936)Google Scholar
  234. 234.
    Quine W.V.: On the axiom of reducibility. Mind 45, 498–500 (1936)CrossRefGoogle Scholar
  235. 235.
    Quine W.V.: On the logic of quantification. J. Symbol. Logic 10, 1–12 (1945)MathSciNetMATHCrossRefGoogle Scholar
  236. 236.
    Quine, W.V.: Methods of Logic. Holt. Rhinehardt & Winston, New York (1950; rev. ed., 1959; 3rd edn., 1972; Harvard University Press, Cambridge, 4th edn., 1982)Google Scholar
  237. 237.
    Quine, W.V.: In the logical vestibule, Times Literary Supplement, July 12, p. 767 (1985); reprinted as: MacHale on Boole, in: [240], 251–257Google Scholar
  238. 238.
    Quine, W.V.: Peirce’s logic. In: Ketner, K.L. (ed.) Peirce and Contemporary Thought: Philosophical Inquiries. Fordham University Press, New York. pp. 23–31 (1995)Google Scholar
  239. 239.
    Quine, W.V.: Peirce’s logic. In: [240], pp. 258–265 (1995). (An abbreviated version of [238].)Google Scholar
  240. 240.
    Quine, W.V.: Selected Logic Papers. Harvard University Press, Cambridge, enlarged ed. (1995)Google Scholar
  241. 241.
    Ramsey, F.P.: The foundations of mathematics. Proc. London Math. Soc (2nd ser.), 25, 338–384 (1926)Google Scholar
  242. 242.
    Reck, E.H.: From Frege to Russell and Carnap: logic and logicism in the 1920s. In: Awodey, S., Klein, C. (eds.) Carnap Brought Home: The View from Jena, pp. 151–180. Open Court, Chicago (2004)Google Scholar
  243. 243.
    Reck, E.H., Awodey, S.: Frege’s lectures on logic and their influenc. In: Reck, E.H., Awodey, S. (transl. and eds.) Frege’s Lectures on Logic: Carnap’s Student Notes, 1910–1914, pp. 17–42. Open Court, Chicago/LaSalle (2004)Google Scholar
  244. 244.
    Riehl, A. 1877. Die englische Logik der Gegenwart, Vierteljahrsschrift für wissenschaftliche Philosophie 1, 50–80 (1877); reprinted: Aloys Riehl, Philosophische Studien aus vier Jahrzehnten. Quelle & Meyer, Leipzig. pp. 175–201 (1925)Google Scholar
  245. 245.
    Robin, R.S. Annotated Catalogue of the Papers of Charles S. Peirce. University of Massachusetts Press, Amherst (1967)Google Scholar
  246. 246.
    Rorty, R.: Introduction: metaphilosophical difficulties of linguistic philosophy. In: Rorty, R. (ed.) The Linguistic Turn: Recent Studies in Philosophical Methods, pp. 1–39. University of Chicago Press, Chicago (1970)Google Scholar
  247. 247.
    Russell B.: Sur la logique des relations avec des applications à à la théorie des séries. Revue de mathématiques/Ri-vista di Matematiche 7, 115–148 (1901)Google Scholar
  248. 248.
    Russell, B.: Letter to Gottlob Frege, 22 June 1902 (1902); English translation by B. Woodward, with introduction by Jean van Heijenoort, in [289], 124–125.Google Scholar
  249. 249.
    Russell B.: The Principles of Mathematics. Cambridge University Press, London (1903)MATHGoogle Scholar
  250. 250.
    Russell, B.: Vaugueness, Australasian Journal of Psychology and Philosophy 1, 84–92 (1923); reprinted: Slater, J.G. (ed.) Essays on Language, Mind and Matter, 1919-26, vol. 9 of The Collected Papers of Bertrand Russell, pp. 147–154. Unwin Hyman, London/Boston/Sydney/Wellington (1988)Google Scholar
  251. 251.
    Russell, B.: My mental development. In: Schilpp, P.A. (ed.) The Philosophy of Bertrand Russell, pp. 3–20. Northwestern University Press, Evanston/Chicago (1944)Google Scholar
  252. 252.
    Russell, B.: Autobiography of Bertrand Russell, vol. 2, pp. 1914–1944. George Allen & Unwin, London (1968)Google Scholar
  253. 253.
    Ryle, G.: Introduction. In: Ayer, A.J. et al. (eds.) The Revolution in Philosophy, pp. 1–11. Macmillan & Co., London/St. Martin’s Press, New York (1957)Google Scholar
  254. 254.
    Salisbury, J.: Ioannis Saresberiensis Episcopi Carnotensis Metalogicon (1159); printed as: Ioannis Saresberiensis Policraticus, sive De nugis curialium, & vestigiis philosophorum, libri octo. Accedit huic editioni eiusdem Metalogicus. Cum indice copiosissimo. Ex officina Ioannis Maire, Lugduni Batavorum (1639)Google Scholar
  255. 255.
    Salisbury, J.: (McGarry, D.D., trans. & ed.) The Metalogicon of John of Salisbury: A Twelfth-century Defense of the Verbal and Logical Arts of the Trivium. University of California Press, Berkeley (1955); reprinted: Peter Smith, Gloucester (1971)Google Scholar
  256. 256.
    Schröder, E.: Review of [99], Zeitschrift für Mathematik und Physik, Historisch-literaturische Abteilung 25, 81–93 (1880)Google Scholar
  257. 257.
    Schröder, E.: Vorlesungen über die Algebra der Logik (Exakte Logik), 3 Bände. B. G. Teubner, Leipzig (1890–1905). (See also appendices 1–7 of [56, pp. 207–427], for partial English translation of Bd. III.)Google Scholar
  258. 258.
    Schröder, E.: Über Pasigraphie, ihren gegenwärtigen Stand und die pasigraphische Bewegung in Italien. In: Rudio, F. (ed.) Verhandlungen des Ersten Internazionalen Mathematiker-Kongressses in Zurich von 9. bis 11. August 1897, pp. 147–162. B.G. Teubner, Leipzig (1898)Google Scholar
  259. 259.
    Schröder, E.: On pasigraphy: its present state and the pasigraphic movement in Italy. The Monist 9, 44–62, 320 (1898)Google Scholar
  260. 260.
    Shearman, A.T.: The Development of Symbolic Logic: A Critical-historical Study of the Logical Calculus. London: Williams and Norgate, London (1906); reprinted: Wm. C. Brown Reprint Library, Dubuque, Iowa (1988)Google Scholar
  261. 261.
    Shearman, A.T.: Critical notice of [249]. Mind (n.s.) 16, 254–265 (1907)Google Scholar
  262. 262.
    Shields, P.B.: Charles S. Peirce on the Logic of Number, Ph.D. thesis, Fordham University (1981); revised edition, Docent Press, Chestnut Hill, forthcoming.Google Scholar
  263. 263.
    Shields, P.B.: Peirce’s axiomatization of arithmetic. In: [153]. pp. 43–52 (1997)Google Scholar
  264. 264.
    Sigwart, H.C.W.: Handbuch zu Vorlesungen über die Logik. C. F. Osiander, Tübingen, vermehrte und verbesserte 8te Aufl., (1835)Google Scholar
  265. 265.
    Skolem, T. Albert. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnkapsselskapels Skrifter 1, Mathematisk-naturvidenskabelig klasse, no. 4 (1920); reprinted: [267], pp. 103–136: English translation: [289], pp. 252–264.Google Scholar
  266. 266.
    Skolem, T.: Sur la portée du théorème de Löwenheim–Skolem, in Ferdinand Gonseth (ed.) Les entriens de Zurich sur les fondements le la méthode des sciences mathématiques, 6-9 décembre 1938. Leesmann, Zurich. pp. 25–47 (1941); reprinted: [267], pp. 445–482Google Scholar
  267. 267.
    Skolem, T. (Fenstad, J.E., ed.) The Selected Works of Th. Skolem. Universitetsforlaget, Oslo/Bergen/Tromso (1970)Google Scholar
  268. 268.
    Sluga H.: Frege against the Booleans. Notre Dame J. Formal Logic 28, 80–98 (1987)MathSciNetMATHCrossRefGoogle Scholar
  269. 269.
    Sommers, F.: On a Fregean dogma. In: Lakatos, I. (ed.) Problems in the Philosophy of Mathematics. Proceedings of the International Colloquium in the Philosophy of Science, London, 1965. North-Holland, Amsterdam. vol. 1, pp. 47–62 (1967)Google Scholar
  270. 270.
    Sommers F.: The calculus of terms. Mind 79, 1–39 (1970)MathSciNetCrossRefGoogle Scholar
  271. 271.
    Sommers, F.: Leibniz’s program for the development of logic. In: Cohen, R.S., Feyerabend, P.K., Wartofsky, M.W. (eds.) Essays in Memory of Imre Lakatos. Reidel, Dordrecht. pp. 589–615 (1976)Google Scholar
  272. 272.
    Spencer, H.: The study of sociology. IX.—the bias of patriotism. Contemp. Rev. XXI (March 1873), 475–502 (1873)Google Scholar
  273. 273.
    Stevens, G.: Reconstructing the logical construction of the world; review of [192]. Russell J. Bertrand Russell Stud. (n.s.) 31, 188–190 (2011–2012)Google Scholar
  274. 274.
    Stroll A.: On the first flowering of Frege’s reputation. J. Hist. Philos. 4, 72–81 (1966)CrossRefGoogle Scholar
  275. 275.
    Tarski A.: Die Wahrheitsbegriff in der formalisierten Sprachen. Studia Philosophica 1, 261–405 (1935)Google Scholar
  276. 276.
    Thiel, C.: Sense and Reference in Frege’s Logic. D. Reidel Publishing Co., Dordrecht/Humanities Press, New York (1968)Google Scholar
  277. 277.
    Thiel, C.: Ernst Schröder und die Verteilung der Quantoren, Arbeitsberichte, Institut für Philosphie der Universität Erlangen-Nürnberg, nr. 16 (März 1988), 20–37 (1988); English translation: [278]Google Scholar
  278. 278.
    Thiel, C.: Ernst Schröder and the distribution of quantifiers. Modern Logic 1, 160–173Google Scholar
  279. 279.
    Thomson, W.: 1842. An Outline of the Necessary Laws of Thought, A Treatise on Pure and Applied Logic. William Pickering, London (1842; W. Graham, Oxford, 1849; W. Pickering, London, 1853; 2nd ed.; 1857; Sheldon, New York/ Gould & Lincoln, Boston, 1863; 1882)Google Scholar
  280. 280.
    Ulrici, H.: Review of [52]. Zeitschrift für Philosophie und philosophische Kritik (N.F.) 27, 273–291 (1855)Google Scholar
  281. 281.
    Ulrici, H.: Review of [132]. Zeitschrift für Philosophie und philosophische Kritik (N.F.) 73, 314–316 (1878)Google Scholar
  282. 282.
    Vailati, G.: La logique mathématique et sa nouvelle phase de développement dans les écrits de M. G. Peano, Revue de Métaphysique et de Morale 7, 86–102 (1899)Google Scholar
  283. 283.
    Van Evra, J.W.: Review of the 1990 reprint of [45]. Modern Logic 2, 405–408 (1992)Google Scholar
  284. 284.
    Van Heijenoort, J.: Van Heijenoort Nachlaß: Papers, 1946–1988; Archives of American Mathematics, University Archives, Barker Texas History Center, University of Texas at Austin; http://www.lib.utexas.edu/taro/utcah/00245/cah-00245.html
  285. 285.
    Van Heijenoort J.: Review of [50]. J. Symbol Logic 22, 382 (1957)Google Scholar
  286. 286.
    Van Heijenoort J.: Review of Maria de la Cinta Badillo Barallat, Automatizacion de los Silogismos en una Logica Polivalente. J. Symbol. Logic 27, 112 (1962)Google Scholar
  287. 287.
    Van Heijenoort, J.: Gödel’s theorem. In: [85]. vol. 3, pp. 348–357 (1963)Google Scholar
  288. 288.
    Van Heijenoort, J.: Logical paradoxes. In: [85]. vol. 5, pp. 45–51 (1963)Google Scholar
  289. 289.
    Van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)Google Scholar
  290. 290.
    Van Heijenoort, J.: Logic as calculus and logic as language, Synthèse 17, 324–330 (1967); reprinted: Cohen, R.S., Wartofsky, M.W., (eds.) Boston Studies in the Philosophy of Science 3 (1967), In: Memory of Russell Norwood Hansen, Proceedings of the Boston Colloquium for Philosophy of Science 1964/1965. Reidel, Dordrecht. pp. 440–44; reprinted: [303], 11–16; Sluga, H. (ed.) General Assessments and Historical Accounts of Frege’s Philosophy, vol. 1: The Philosophy of Frege, Garland Publishing Co., New York. pp. 72–79 (1993)Google Scholar
  291. 291.
    Van Heijenoort, J.: Préface. In: [145]. pp. 1–12 (1968)Google Scholar
  292. 292.
    Van Heijenoort, J.: Review of A.V. Idel’son, G.E. Mints (eds.) Matematicheskaya teoriya logicheskogo vyvoda. J. Symbol. Logic 35, 323–325 (1970)Google Scholar
  293. 293.
    Van Heijenoort, J.: Review of G. E. Mints, Teorema Erbrana dlya ischisleniya predikatov s ravenstvom i funktsional’nymu simvolamu, and English translation by L. F. Boron. J. Symbol. Logic 35, 325 (1970)Google Scholar
  294. 294.
    Van Heijenoort J.: Review of various papers of G. E. Mints. J. Symbol. Logic 36, 524–528 (1971)CrossRefGoogle Scholar
  295. 295.
    Van Heijenoort, J.: Subject and predicate in western logic, Philosophy East and West 24, 253–268 (1974); reprinted, with revisions, in: [303], pp. 17–34Google Scholar
  296. 296.
    Van Heijenoort, J.: Translation of modal quantification theory into nonmodal quantification theory; ms., November 15, 1974; in: [284], Box 3.8/86-33/1Google Scholar
  297. 297.
    Van Heijenoort, J.: El desarrollo de la teoría de la cunatificación. Universidad Nacional Autónoma de México, Mexico City (1976)Google Scholar
  298. 298.
    Van Heijenoort, J.: Set-theoretic semantics. In: Gandy, R.O., Hyland, J.M.E. (eds.) Logic Colloquium ’76, (Oxford, 1976). North-Holland: Amsterdam. pp. 183–190 (1977); reprinted in: [303], pp. 43–53Google Scholar
  299. 299.
    Van Heijenoort, J.: Sense in Frege. J. Philos. Logic 6, 93–102 (1977); reprinted in: [303], pp. 55–63Google Scholar
  300. 300.
    Van Heijenoort, J.: Frege on Sense identity. J. Philos. Logic 6, 103–108 (1977); reprinted in: [303], pp. 65–69Google Scholar
  301. 301.
    Van Heijenoort, J.: Introduction à à la sémantique des logiques non-classiques. Collection de l’École Normale Supérieur des Jeunes Filles, Paris (1979)Google Scholar
  302. 302.
    Van Heijenoort, J.: L’œuvre logique de Jacques Herbrand et son contexte historique. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium, Logic Colloquium ‘81, Marseilles, France, July 1981. North-Holland, Amsterdam/New York/Oxford. pp. 57–85 (1982)Google Scholar
  303. 303.
    Van Heijenoort, J.: Selected Essays. Bibliopolis, Naples (1985)Google Scholar
  304. 304.
    Van Heijenoort, J.: Ostension and vagueness (1979); published in: [303], pp. 71–73 (1985)Google Scholar
  305. 305.
    Van Heijenoort, J.: Absolutism and relativism in logic (1979); published in: [303], pp. 75–83Google Scholar
  306. 306.
    Van Heijenoort, J.: Frege and vagueness. In: Haaparanta, L., Hintikka, J. (eds.) Frege Synthesized, pp. 31–45. Kluwer, Dordrecht; reprinted in: [303], pp. 85–97Google Scholar
  307. 307.
    Van Heijenoort, J.: Jacques Herbrand’s work in logic and its historical context. In: [303], pp. 99–121Google Scholar
  308. 308.
    Van Heijenoort, J.: Friedrich Engels and mathematics (1948); published in: [303], pp. 123–151Google Scholar
  309. 309.
    Système et métasystème chez Russell. In: The Paris Logic Group (eds.) Logic Colloquium ’85. North-Holland, Amsterdam/London/New York. pp. 111–122. (1987)Google Scholar
  310. 310.
    Van Heijenoort, J.: Historical development of modern logic, Modern Logic 2, 242–255 (1992) [Prepared by Irving H. Anellis from a previously unpublished typescript of 1974; reprinted, with a new introduction and notes, this edition.]Google Scholar
  311. 311.
    Van Heijenoort, J.: Logic, nature of; undated ms., in: [284], Box 3.8/86-33/3Google Scholar
  312. 312.
    Van Heijenoort, J.: On the Frege–Russell definition of number; undated ms.; in: [284], Box 3.8/86-33/2Google Scholar
  313. 313.
    Van Heijenoort, J.: Untitled, undated ms., 1p., located in the “Herbrand” file; in [284], Box 3.8/86-33/2Google Scholar
  314. 314.
    Vasil’ev, N.A.: O chastnykh suzhdeniyakh, o treugol’nike protivopolozhnostei, o zakone isklyuchennogo chetvertogo. Uchenye Zapiski Kazanskogo Universiteta 77, nr. 10; 47 pp. (1910)Google Scholar
  315. 315.
    Vasil’ev, N.A.: Voobrazhaemaya (nearistoteleva) logika. Zhurnal Ministerstva Narodnago Prosveshcheniya 40, 207–246 (1912)Google Scholar
  316. 316.
    Vasil’ev, N.A.: Logika i metalogika, (nos. 1–2), 53–81 (1912–1913)Google Scholar
  317. 317.
    Venn, J.: Review [99], Mind (o.s.) 5, 297 (1880)Google Scholar
  318. 318.
    Vilkko R.: The reception of Frege’s Begriffsschrift. Hist. Math. 25, 412–422 (1998)MathSciNetMATHCrossRefGoogle Scholar
  319. 319.
    Vilkko, R.: A Hundred Years of Logical Investigations: Reform Effort of Logic in Germany 1781–1879. Mentis Verag, Paderborn 92002)Google Scholar
  320. 320.
    Voigt, A.H.: Zum Calcul der Inhaltslogik. Erwiderung auf Herrn Husserls Artikel. Vierteljahrsschrift für wissenschaftliche Philosophie 17, 504–507 (1893)Google Scholar
  321. 321.
    Wang, H.: A survey of Skolem’s work in logic. In: [267], pp. 17–52 (1970)Google Scholar
  322. 322.
    Welby, V.: What is Meaning? Macmillan. London/New York (1903)Google Scholar
  323. 323.
    Whitehead A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge (1898)Google Scholar
  324. 324.
    Whitehead, A.N.: Memoir on the algebra of symbolic logic. Am. J. Math. 23, 139–165, 297–316 (1901)Google Scholar
  325. 325.
    Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols. Cambridge University Press, Cambridge (1910–1913)Google Scholar
  326. 326.
    Wirth, C.-P., Siekmann, J., Benzmüller, C., Autexier, S.: Jacques Herbrand: life, logic, and automated deduction. In: Gabbay D.M., Woods, J. (eds.) Handbook of the History of Logic, vol. 5: Logic from Russell to Church. North-Holland, Amsterdam. pp. 195–254 (2009)Google Scholar
  327. 327.
    Wittgenstein, L.: (Ogden, C. K., trans.), Tractatus Logico-philosophicus/ Logisch-phlosophische Abhandlung. London: Kegan Paul, Trench, Trubner & Co., Ltd./New York: Harcourt, Brace, & Co. (1922)Google Scholar
  328. 328.
    Wittgenstein, L.: (Anscombe, G. E. M., trans.), Philosophical Investigations/Philosophische Untersuchungen. Basil Blackwell, Oxford/Macmillan, New York (1953)Google Scholar
  329. 329.
    Wittgenstein, L.: (Von Wright, G.H., Rhees, R., Anscombe, G.E.M., eds., Anscombe, G.E.M., trans.), Remarks on the Foundations of Mathematics/Bemerkungen über die Grundlagen der Mathematik. Basil Blackwell, Oxford (1956)Google Scholar
  330. 330.
    Wittgenstein, L.: (Anscombe, G.E.M., Von Wright, G.H., eds., Paul, D., Anscombe, G.E.M., trans.), On Certainty/Über Gewißheit, Basil Blackwell, Oxford (1969–1975)Google Scholar
  331. 331.
    Wittgenstein, L.: (Rhees, R. ed.) Philosophische Grammatik. Surhkamp, Frankfurt (1973)Google Scholar
  332. 332.
    Woleński, J.: 2011. First-order logic: (Philosophical) pro and contra. In: Woleński, J. (eds.) Essays on Logic and Its Applications in Philosophy, pp. 61–80. Peter Lang GmbH, Frankfurt am Main (2011); reprinted from: Henricks, V., Neuhaus, F., Pedersen, S.A., Scheffler, U., Wansing, H. (eds.) First-Order Logic Revisited, pp. 369–399. Logos Verlag, Berlin (2004)Google Scholar
  333. 333.
    Wu J.: The problem of existential import from George Boole to P.F. Strawson. Notre Dame J. Formal Logic 10, 415–424 (1969)MATHCrossRefGoogle Scholar
  334. 334.
    Zaitsev, E.A.: 1989 Dz. Peano o ponyatii “tot, kotoryi” i vozmozhnosti ego elminatsii iz teorii, Istoriya i metodologiya estestvennykh nauk 36, 50–58 (1989)Google Scholar
  335. 335.
    Zitarelli D.E.: Review of [334]. Hist. Math. 19, 445 (1992)Google Scholar
  336. 336.
    Zitarelli D.E.: Review of [334]. Hist. Math. 19, 482 (1992)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institute for American ThoughtIndiana University-Purdue University at IndanapolisIndianapolisUSA

Personalised recommendations