Logica Universalis

, Volume 3, Issue 2, pp 303–332

On the 3D Visualisation of Logical Relations

Article

Abstract

The central aim of this paper is to present a Boolean algebraic approach to the classical Aristotelian Relations of Opposition, namely Contradiction and (Sub)contrariety, and to provide a 3D visualisation of those relations based on the geometrical properties of Platonic and Archimedean solids. In the first part we start from the standard Generalized Quantifier analysis of expressions for comparative quantification to build the Comparative Quantifier Algebra CQA. The underlying scalar structure allows us to define the Aristotelian relations in Boolean terms and to propose a 3D visualisation by transforming a cube into an octahedron. In part two, the architecture of the CQA is shown to carry over, both to the classical quantifiers of Predicate Calculus and to the modal operators—which are given a Generalized Quantifier style re-interpretation. In this way we provide an algebraic foundation for Blanché’s Aristotelian hexagon as well as a 3D alternative to his 2D star-like visualisation. In a final part, a richer scalar structure is argued to underly the realm of Modality, thus generalizing the 3D algebra with eight (23) operators to a 4D algebra with sixteen (24) operators. The visual representation of the latter structure involves a transformation of the hypercube to a rhombic dodecahedron. The resulting 3D visualisation allows a straightforward embedding, not only of the classical Blanché star of Aristotelian relations or the paracomplete and paraconsistent stars of Béziau (Log Investig 10, 218–232, 2003) but also of three additional isomorphic Aristotelian constellations.

Mathematics Subject Classification (2000)

Primary 03B45 03B65 O3G05 Secondary 03E02 05C99 

Keywords

logical square; logical hexagon aristotelian relations of opposition contradiction contrariety Boolean algebra modal logic 3D visualisation polyhedra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Auwera J.: Modality: the three-layered scalar square. J. Semant. 13, 181–195 (1996)CrossRefGoogle Scholar
  2. 2.
    Barwise J., Cooper R.: Generalized quantifiers and natural language. Linguist. Philos. 4, 159–219 (1981)MATHCrossRefGoogle Scholar
  3. 3.
    Béziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–232 (2003)Google Scholar
  4. 4.
    Blanché R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  5. 5.
    Blanché, R.: Structures intellectuelles. Essai sur l’organisation systématique des concepts. Librairie Philosophique J. Vrin, Paris (1969)Google Scholar
  6. 6.
    Cromwell P.R.: Polyhedra. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  7. 7.
    Froger J.-F., Lutz R.: Fondements logiques de la physique. éditions DesIris, Paris (2007)Google Scholar
  8. 8.
    Gamut L.T.F.: Logic, language and meaning. Intensional logic and logical grammar, vol. 2. University of Chicago Press, Chicago (1991)Google Scholar
  9. 9.
    Horn L.R. et al.: Hamburgers and truth: why Gricean explanation is Gricean. In: Hall, K.(eds) Proceedings of the Sixteenth Annual Meeting of the Berkeley Linguistics Society., pp. 454–471. Berkeley Linguistics Society, Berkeley (1990)Google Scholar
  10. 10.
    Horn L.R.: A Natural History of Negation. CSLI, Stanford (2001)Google Scholar
  11. 11.
    Hughes G.E., Cresswell M.J.: A New Introduction to Modal Logic. Routledge, London (1996)MATHGoogle Scholar
  12. 12.
    Humberstone L.: Modality. In: Jackson, F., Smith, M.(eds) The Oxford Handbook of Contemporary Philosophy., pp. 534–614. OUP, Oxford (2005)Google Scholar
  13. 13.
    Jaspers D.: Operators in the Lexicon : on the Negative Logic of Natural Language. LOT, Utrecht (2005)Google Scholar
  14. 14.
    Jespersen, O.: Negation in English and other languages. Munksgaard, Kobenhavn (1917/1966)Google Scholar
  15. 15.
    Keenan E.L., Westerståhl D.: Generalized quantifiers in linguistics and logic. In: Benthem, J., Aliceter Meulen, A.(eds) Handbook of Logic and Language., pp. 837–893. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  16. 16.
    Link, G.: The logical analysis of plurals and mass terms: a lattice-theoretical approach. In: Bauerle, et al (eds.) Meaning, use, and interpretation of language, pp. 302–323. de Gruyter, Berlin (1983)Google Scholar
  17. 17.
    Löbner, S.: Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Linguistische Arbeiten 244. Max Niemeyer Verlag, Tübingen (1990)Google Scholar
  18. 18.
    Luzeaux D., Sallantin J., Dartnell C.: Logical extensions of aristotle’s square. Log. Univers. 2, 167–187 (2008)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Moretti A.: Geometry for Modalities? Yes: Through n-Opposition Theory. In: Béziau, J.-Y., Leite, A.C., Facchini, A.(eds) Aspects of Universal Logic., pp. 102–145. Centre de Recherches Sémiologiques, Neuchâtel (2004)Google Scholar
  20. 20.
    Moretti, A.: The Geometry of Logical Opposition. PhD Thesis, University of Neuchâtel, Switzerland (2009)Google Scholar
  21. 21.
    Parsons, T.: The Traditional Square of Opposition. Stanford Encyclopedia of Philosophy. (http://plato.stanford.edu/entries/square/), (1997/2006)
  22. 22.
    Partee B.H., Ter Meulen A.G.B., Wall R.E.: Mathematical Methods in Linguistics. Kluwer, Dordrecht (1990)MATHGoogle Scholar
  23. 23.
    Pellissier R.: Setting n-Opposition. Log. Univers. 2/2, 235–263 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Peters S., Westerståhl D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  25. 25.
    Seidel J.J., Vroegindewey J.J.: Algebraïsche structuren voor informatici. Academic Service, Schoonhoven (1988)Google Scholar
  26. 26.
    Seuren P.: The natural logic of language and cognition. Pragmatics 15/4, 103–138 (2006)Google Scholar
  27. 27.
    Seuren, P.: The Victorious Square. A Study of Natural Predicate Logic. Max Planck Institute for Psycholinguistics, Nijmegen (2007)Google Scholar
  28. 28.
    Smessaert, H.: The Logical Geometry of Comparison and Quantification. A cross-categorial analysis of Dutch determiners and aspectual adverbs. Unpublished PhD. dissertation, K.U. Leuven, Belgium (1993)Google Scholar
  29. 29.
    Smessaert H.: Monotonicity properties of comparative determiners. Linguist. Philos. 19/3, 295–336 (1996)CrossRefGoogle Scholar
  30. 30.
    Westerståhl, D.: Classical versus modern squares of opposition and beyond. In: Proceedings of the First Conference on the Square of Opposition (Montreux, 13 June 2007) (2009, to appear)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of LinguisticsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations