Logica Universalis

, Volume 3, Issue 1, pp 95–124 | Cite as

What is a Logic Translation?

  • Till Mossakowski
  • Răzvan Diaconescu
  • Andrzej Tarlecki


We study logic translations from an abstract perspective, without any commitment to the structure of sentences and the nature of logical entailment, which also means that we cover both proof- theoretic and model-theoretic entailment. We show how logic translations induce notions of logical expressiveness, consistency strength and sublogic, leading to an explanation of paradoxes that have been described in the literature. Connectives and quantifiers, although not present in the definition of logic and logic translation, can be recovered by their abstract properties and are preserved and reflected by translations under suitable conditions.

Mathematics Subject Classification (2000)

03B20 03B22 03B70 03G30 18C50 68Q65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Avron A.: Simple consequence relations. Inf. Comput. 92(1), 105–140 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Avron A., Lev I.: Canonical propositional Gentzen-type systems. In: Goré, R., Leitsch, A., Nipkow, T. (eds) IJCAR. Lecture Notes in Computer Science, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Béziau J.-Y.: Classical negation can be expressed by one of its halves. Logic J. IGPL 7(2), 145–151 (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Blackburn P., de Rijke M., Venema Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Blok, W.J., Pigozzi, D.: Abstract algebraic logic and the deduction theorem. Bull. Symb. Logic (to appear)Google Scholar
  7. 7.
    Borceux F.: Handbook of Categorical Algebra I–III. Cambridge University Press, Cambridge (1994)Google Scholar
  8. 8.
    Brown D.J., Suszko R.: Abstract logics. Diss. Math. 102, 9–41 (1973)MathSciNetGoogle Scholar
  9. 9.
    Caleiro C., Gonçalves R.: Equipollent logical systems. In: Béziau, J.-Y. (eds) Logica Universalis, pp. 99–112. Birkhäuser Verlag, Basel (2005)CrossRefGoogle Scholar
  10. 10.
    Carnielli W.A., D’Ottaviano I.M.L.: Translations between logical systems: A manifesto. Log. Anal. 157, 67–82 (1997)MathSciNetGoogle Scholar
  11. 11.
    Cerioli M., Meseguer J.: May I borrow your logic? (transporting logical structures along maps). Theor. Comput. Sci. 173, 311–347 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    da Silva J.J., D’Ottaviano I.M.L., Sette A.M.: Translations between logics. In: Caicedo, X., Montenegro, C.H. (eds) Models, Algebras and Proofs. Lecture Notes in Pure and Applied Mathematics, vol. 203, pp. 435–448. Marcel Dekker, New York (1999)Google Scholar
  13. 13.
    Diaconescu R.: Institution-independent ultraproducts. Fundam. Inform. 55, 321–348 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Diaconescu R.: Herbrand theorems in arbitrary institutions. Inf. Process. Lett. 90, 29–37 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Diaconescu R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  16. 16.
    Epstein R.L.: The Semantic Foundations of Logic. Volume 1: Propositional Logics, volume 35 of Nijhoff International Philosophy Series. Kluwer, Dordrecht (1990)Google Scholar
  17. 17.
    Feitosa H.A., D’Ottaviano I.M.L.: Conservative translations. Ann. Pure Appl. Logic 108(1–3), 205–227 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fiadeiro J., Sernadas A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds) Fifth WADT. Lecture Notes in Computer Science, vol. 332, pp. 44–72. Springer, Heidelberg (1988)Google Scholar
  19. 19.
    Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds): Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 4060. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Gabbay D.M.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht (1981)zbMATHGoogle Scholar
  21. 21.
    Gentzen G.: On the relation between intuitionist and classical arithmetic. In: Szabo, M.E. (eds) The Collected Papers of Gerhard Gentzen, 1944, pp. 53–67. North–Holland, Amsterdam (1969)Google Scholar
  22. 22.
    Gentzen G.: Investigations into logical deduction. In: Szabo, M.E. (eds) The Collected Papers of Gerhard Gentzen, pp. 68–213. North–Holland, Amsterdam (1969)Google Scholar
  23. 23.
    Glivenko V.: Sur quelques points de la logique de M. Brouwer. Acad. R. Belg. Bull. Cl. Sci. 15(5), 183–188 (1929)Google Scholar
  24. 24.
    Gödel K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergeb. Math. Kolloquiums 4, 34–40 (1933)Google Scholar
  25. 25.
    Gödel K.: On intuitionistic arithmetic and number theory. In: Feferman, S. et al. (eds) K. Gödel. Collected Works, 1933, pp. 287–295. Oxford University Press, Oxford (1986)Google Scholar
  26. 26.
    Gödel K.: The consistency of the axiom of choice and of the generalized continuum hypothesis. Proc. Natl. Acad. Sci. USA 24, 556–557 (1938)CrossRefGoogle Scholar
  27. 27.
    Goguen J.A., Burstall R.M.: A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. In: Pitt, D. et al. (eds) Category Theory and Computer Programming, Lecture Notes in Computer Science, vol. 240, pp. 313–333. Springer, Heidelberg (1985)Google Scholar
  28. 28.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 95–146, 1992, Predecessor in Lecture Notes in Computer Science 164, 221–256 (1984)Google Scholar
  29. 29.
    Goguen J.A., Roşu G.: Institution morphisms. Form. Asp. Comput. 13, 274–307 (2002)zbMATHCrossRefGoogle Scholar
  30. 30.
    Humberstone L.: Béziau’s translation paradox. Theoria 2, 138–181 (2005)MathSciNetGoogle Scholar
  31. 31.
    Humberstone L.: Logical discrimination. In: Beziau, J.-Y. (eds) Logica Universalis, pp. 207–228. Birkhäuser, Switzerland (2005)CrossRefGoogle Scholar
  32. 32.
    Kolmogorov A.N.: On the principle of excluded middle. In: Heijenoort, J. (eds) From Frege to Gödel: a source book in mathematical logic 1879–1931, 1925, pp. 414–437. Harvard University Press, Cambridge (1977)Google Scholar
  33. 33.
    Kreowski H.-J., Mossakowski T.: Equivalence and difference of institutions: simulating Horn clause logic with based algebras. Math. Struct. Comput. Sci. 5, 189–215 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lambek J., Scott P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  35. 35.
    Mac Lane S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  36. 36.
    Lawvere, F.W.: Functional Semantics of Algebraic Theories. PhD thesis, Columbia University (1963)Google Scholar
  37. 37.
    Lawvere F.W.: Functorial semantics of elementary theories. J. Symb. Log. 31, 294–295 (1966)Google Scholar
  38. 38.
    Meseguer, J.: General logics. In: Logic Colloquium 87, pp. 275–329. North– Holland, Amsterdam (1989)Google Scholar
  39. 39.
    Mossakowski T.: Relating Casl with other specification languages: the institution level. Theor. Comput. Sci. 286, 367–475 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Mossakowski T., Goguen J.A., Diaconescu R., Tarlecki A.: What is a logic?. In: Beziau, J.-Y. (eds) Logica Universalis, 2nd edn, pp. 111–134. Birkhäuser, Basel (2007)Google Scholar
  41. 41.
    Mosses, P.D. (eds): CASL Reference Manual, The Complete Documentation of the Common Algebraic Specification Language. Lecture Notes in Computer Science, vol. 2960. Springer, Heidelberg (2004)Google Scholar
  42. 42.
    Peirce, C.S.: Collected Papers. Harvard (1965). In: 6 volumes; see especially Volume 2: Elements of LogicGoogle Scholar
  43. 43.
    Prawitz D., Malmnäs P.E.: A survey of some connections between classical, intuitionistic and minimal logic. In: Schmidt, H. et al. (eds) Contributions to Mathematical Logic, pp. 215–229. North–Holland, Amsterdam (1968)CrossRefGoogle Scholar
  44. 44.
    Rasiowa H., Sikorski R.: The Mathematics of Metamathematics. Polish Scientific Publishers, Warszawa (1963)zbMATHGoogle Scholar
  45. 45.
    Scott, D.: Rules and derived rules. In: Stenlund, S. (ed.) Logical Theory and Semantic Analysis, pp. 147–161. Reidel (1974)Google Scholar
  46. 46.
    Shoenfield J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)zbMATHGoogle Scholar
  47. 47.
    Tarlecki A.: Quasi-varieties in abstract algebraic institutions. J. Comput. Syst. Sci. 33, 333–360 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Wojcicki R.: On reconstructability of the classical propositional logic into intuitionistic logic. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astronomy. Phys. 18, 421–424 (1970)zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Till Mossakowski
    • 1
    • 2
  • Răzvan Diaconescu
    • 3
  • Andrzej Tarlecki
    • 4
    • 5
  1. 1.DFKI GmbHBremenGermany
  2. 2.Universität BremenBremenGermany
  3. 3.Institute of Mathematics “Simion Stoilow”BucharestRomania
  4. 4.Institute of InformaticsThe University of WarsawWarsawPoland
  5. 5.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations