Advertisement

On Multivariate Hermitian Quadratic Forms

  • Ryoya Fukasaku
  • Hidenao Iwane
  • Yosuke Sato
Article
  • 4 Downloads

Abstract

Multivariate Hermitian quadratic forms play an important role in the real quantifier elimination algorithm based on the computation of comprehensive Gröbner systems introduced by V. Weispfenning and further improved by us. Our algorithm needs the computation of a certain type of saturation ideal in a parametric polynomial ring. In this paper, we study multivariate Hermitian quadratic forms in more detail and show several facts which have special importance in a parametric polynomial ring. Our results enable us to have an efficient method to compute the saturation ideal, which brings us a drastic improvement of our real quantifier elimination software.

Keywords

Quantifier elimination Real closed field Comprehensive Gröbner system 

Mathematics Subject Classification

12D99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers 17K12642 and 18K03426.

References

  1. 1.
    Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 1–8, ACM-Press (2014)Google Scholar
  2. 2.
    Becker, E., Wörmann, T.: On the trace formula for quadratic forms. In: Proceedings of Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemporary Mathematics, vol. 155, pp. 271–291. American Mathematical Society (1994)Google Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proceedings of Automata Theory and Formal Languages, LNCS vol. 33, pp. 134–183. Springer, Berlin (1975)Google Scholar
  7. 7.
    Fukasaku, R.: QE software based on comprehensive Gröbner systems. In: Proceedings of Mathematical Software—ICMS 2014—4th International Congress, LNCS vol. 8592, pp. 512–517. Springer, Berlin (2014)zbMATHGoogle Scholar
  8. 8.
    Fukasaku, R., Iwane, H., Sato, Y: Real quantifier elimination by computation of comprehensive Gröbner systems. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 173–180. ACM-Press (2015)Google Scholar
  9. 9.
    Fukasaku, R., Iwane, H., Sato, Y: On the Implementation of CGS Real QE. In: Proceedings of Mathematical Software—ICMS 2016—5th International Conference, LNCS vol. 9725, pp. 165–172. Springer, Berlin (2016)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 29–36. ACM-Press (2010)Google Scholar
  12. 12.
    Kurata, Y.: Improving Suzuki–Sato’s CGS algorithm by using stability of Gröbner bases and basic manipulations for efficient implementation. Commun. Jpn. Soc. Symb. Algebr. Comput. 1, 39–66 (2011)Google Scholar
  13. 13.
  14. 14.
    Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 299–306. ACM-Press (2007)Google Scholar
  15. 15.
    Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Proceedings of Computer Algebra in Scientific Computing, LNCS vol. 7442, pp. 248–259. Springer, Berlin (2012)CrossRefGoogle Scholar
  16. 16.
    Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeroes in the multivariate case. In: Proceedings of Effective Methods in Algebraic Geometry, Progress in Mathematics vol. 109, pp. 203–224. Springer, Berlin (1993)CrossRefGoogle Scholar
  17. 17.
    Sato, S., Fukasaku, R., Sekigawa, H.: On continuity of the roots of a parametric zero dimensional multivariate polynomial ideal. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 359–365. ACM-Press (2018)Google Scholar
  18. 18.
  19. 19.
  20. 20.
    Strzebonski, A.: Solving systems of strict polynomial inequalities. J. Symb. Comput. 29(3), 471–480 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 326–331. ACM-Press (2006)Google Scholar
  23. 23.
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 376–392. Springer, Berlin (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tokyo University of ScienceTokyoJapan
  2. 2.Fujitsu Laboratories LTD/National Institute of InformaticsKanagawaJapan

Personalised recommendations