Minimal Height Companion Matrices for Euclid Polynomials

  • E. Y. S. ChanEmail author
  • R. M. Corless


We define Euclid polynomials \(E_{k+1}(\lambda ) = E_{k}(\lambda )\left( E_{k}(\lambda ) - 1\right) + 1\) and \(E_{1}(\lambda ) = \lambda + 1\) in analogy to Euclid numbers \(e_k = E_{k}(1)\). We show how to construct companion matrices \(\mathbb {E}_k\), so \(E_k(\lambda ) = {\text {det}}\left( \lambda \mathbf {I} - \mathbb {E}_{k}\right) \), of height 1 (and thus of minimal height over all integer companion matrices for \(E_{k}(\lambda )\)). We prove various properties of these objects, and give experimental confirmation of some unproved properties.


Bohemian eigenvalues Minimal height Companion matrix Conditioning Euclid numbers 

Mathematics Subject Classification

11C20 15A22 65F15 65F35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beltrán, C., Armentano, D.: The polynomial eigenvalue problem is well conditioned for random inputs (2017). Preprint. arXiv:1706.06025. Accessed Aug 2017
  2. 2.
    Chan, E.Y.S., Corless, R.M.: A new kind of companion matrix. Electron. J. Linear Algebra 32, 335–342 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, E.Y.S., Corless, R.M., Gonzalez-Vega, L., Sendra, J.R., Sendra, J.: Algebraic linearizations of matrix polynomials. Manuscript submitted for publication (2017)Google Scholar
  4. 4.
    Chan, E.Y.S.: A comparison of solution methods for Mandelbrot-like polynomials. Master’s thesis, The University of Western Ontario (2016)Google Scholar
  5. 5.
    Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Farouki, R.T., Rajan, V.T.: On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Design 4(3), 191–216 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison & Wesley, Reading (1994)zbMATHGoogle Scholar
  8. 8.
    Golub, G.H., van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore (2012)zbMATHGoogle Scholar
  9. 8.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  10. 9.
    Kalugin, G.A., Jeffrey, D.J.: Unimodal sequences show Lambert W is Bernstein (2010). Preprint arXiv:1011.5940. Accessed Aug 2017
  11. 10.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, vol. 2. Siam, Philadelphia (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ontario Research Center for Computer Algebra and School of Mathematical and Statistical Sciences, Rotman Institute of PhilosophyWestern UniversityLondonCanada

Personalised recommendations