Advertisement

Mathematics in Computer Science

, Volume 12, Issue 2, pp 183–195 | Cite as

Dealing with Functional Coefficients Within Tau Method

  • M. Trindade
  • J. Matos
  • P. B. VasconcelosEmail author
Article
  • 28 Downloads

Abstract

The spectral tau method was originally proposed by Lanczos for the solution of linear differential problems with polynomial coefficients. In this contribution we present three approaches to tackle integro-differential equations with non-polynomial coefficients: (i) making use of functions of matrices, (ii) applying orthogonal interpolation and (iii) solving auxiliary differential problems by the tau method itself. These approaches are part of the Tau Toolbox efforts for deploying a numerical library for the solution of integro-differential problems. Numerical experiments illustrate the use of all these polynomial approximations in the context of the tau method.

Keywords

Spectral methods Initial and boundary value problems Software 

Mathematics Subject Classification

68N01 68N19 65L05 65L10 47G20 34K28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanczos, C.: Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 17(3), 123–199 (1938)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abbasbandy, S., Taati, A.: Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational tau method and error estimation. J. Comput. Appl. Math. 231(1), 106–113 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Crisci, M.R., Russo, E.: An extension of Ortiz’ recursive formulation of the tau method to certain linear systems of ordinary differential equations. Math. Comput. 41(163), 27–42 (1983)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Liu, K., Pan, C.: The automatic solution to systems of ordinary differential equations by the tau method. Comput. Math. Appl. 38(9–10), 197–210 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Matos, J., Rodrigues, M.J., Vasconcelos, P.B.: New implementation of the tau method for PDEs. J. Comput. Appl. Math. 164–165, 555–567 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ortiz, E.L., Dinh, A.P.N.: Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the tau method. SIAM J. Math. Anal. 18(2), 452–464 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pour-Mahmoud, J., Rahimi-Ardabili, M.Y., Shahmorad, S.: Numerical solution of the system of Fredholm integro-differential equations by the tau method. Appl. Math. Comput. 168(1), 465–478 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ortiz, E.L., Samara, H.: An operational approach to the tau method for the numerical solution of nonlinear differential equations. Computing 1(27), 15–25 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hosseini, S.M., Shahmorad, S.: Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 136(2–3), 559–570 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Vasconcelos, P.B., Matos, J., Trindade, M.S.: Spectral Lanczos’ tau method for systems of nonlinear integro-differential equations. In: Constanda, C., et al. (eds.) Integral Methods on Science and Engineering: Theoretical Techniques, vol. 1, pp. 305–314. Springer, Berlin (2017)Google Scholar
  11. 11.
    Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221–230 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Parlett, B.: Computation of Functions of Triangular Matrices. Memorandum ERL-M481. Electronics Research Laboratory, College of Engineering, University of California, Berkeley (1974)Google Scholar
  14. 14.
    Golub, G.H., van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)zbMATHGoogle Scholar
  15. 15.
    Mathias, R.: Approximation of matrix-valued functions. SIAM J. Matrix Anal. A 14(4), 1061–1063 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Trindade, M.S., Matos, J., Vasconcelos, P.B.: Towards a Lanczos’ \(\tau \)-method toolkit for differential problems. Math. Comput. Sci. 10(3), 313–329 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.Laboratório Engenharia Matemática, Center of Mathematics, Instituto Superior Engenharia PortoUniversity of PortoPortoPortugal
  3. 3.Center of Mathematics, Faculty of EconomicsUniversity of PortoPortoPortugal

Personalised recommendations