Advertisement

Mathematics in Computer Science

, Volume 11, Issue 2, pp 233–249 | Cite as

Solving the Minimum Common String Partition Problem with the Help of Ants

  • S. M. Ferdous
  • M. Sohel Rahman
Article

Abstract

In this paper, we consider the problem of finding a minimum common partition of two strings. The problem has its application in Genome Comparison. As it is an NP-hard, discrete combinatorial optimization problem, we employ a metaheuristic technique, namely, MAX–MIN ant system to solve this problem. To achieve better efficiency we first map the problem instance into a special kind of graph. Subsequently, we employ a MAX–MIN ant system to achieve high quality solutions for the problem. Experimental results show the superiority of our algorithm in comparison with the state of art algorithms in the literature. The improvement achieved is also justified by a standard statistical test.

Keywords

Ant Colony Optimization Metaheuristics Graph Algorithms Computational Biology 

Mathematics Subject Classification

68 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, C.: Beam-ACO for the longest common subsequence problem. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  2. 2.
    Blum, C., Lozano, J., Davidson, P.P.: Iterative probabilistic tree search for the minimum common string partition problem. In: Blesa, M., Blum, C., Voß, S. (eds.) Hybrid Metaheuristics, pp. 145–154. Springer, Berlin (2014)Google Scholar
  3. 3.
    Blum, C., Lozano, J., Davidson, P.P.: Mathematical programming strategies for solving the minimum common string partition problem. Eur. J. Oper. Res. 242, 769–777 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, C., Vallès, M.Y., Blesa, M.J.: An ant colony optimization algorithm for dna sequencing by hybridization. Comput. Oper. Res. 35(11), 3620–3635 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(4), 302–315 (2005)CrossRefGoogle Scholar
  6. 6.
    Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. ACM Trans. Algorithms 1(2), 350–366 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Damaschke, P.: Minimum common string partition parameterized. In: Crandall, K., Lagergren, J. (eds.) Algorithms in Bioinformatics. Lecture Notes in Computer Science, vol. 5251, pp. 87–98. Springer, Berlin (2008)Google Scholar
  8. 8.
    Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Milan (1992)Google Scholar
  9. 9.
    Dorigo, M., Colorni, A., Maniezzo, V.: Positive feedback as a search strategy. Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan (1991)Google Scholar
  10. 10.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)zbMATHGoogle Scholar
  14. 14.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, New York (2010)Google Scholar
  15. 15.
    Ferdous, S., Das, A., Rahman, M., Rahman, M.: Ant colony optimization approach to solve the minimum string cover problem. In: International Conference on Informatics, Electronics and Vision (ICIEV), pp. 741–746. IEEE (2012)Google Scholar
  16. 16.
    Ferdous, S., Rahman, M.: Solving the minimum common string partition problem with the help of ants. In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in Swarm Intelligence. Lecture Notes in Computer Science, vol. 7928, pp. 306–313. Springer, Berlin (2013)Google Scholar
  17. 17.
    Ferdous, S.M., Rahman, M.S.: An integer programming formulation of the minimum common string partition problem. PLoS ONE 10, e0130266 (2015)CrossRefGoogle Scholar
  18. 18.
    Gambardella, L., Dorigo, M.: Ant-q: a reinforcement learning approach to the traveling salesman problem, pp. 252–260. Morgan Kaufmann, Los Altos (1995)Google Scholar
  19. 19.
    Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: hardness and approximations. Electron. J. Comb. 12(R50) (2005)Google Scholar
  20. 20.
    Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited. In: Proceedings of the 4th International Conference on Frontiers in Algorithmics, FAW’10, pp. 45–52. Springer, Berlin (2010)Google Scholar
  21. 21.
    Shyu, S.J., Tsai, C.-Y.: Finding the longest common subsequence for multiple biological sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stothard, P.: The sequence manipulation suite: Javascript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6), 1102 (2000)Google Scholar
  23. 23.
    Stützle, T., Hoos, H.: Improving the ant system: a detailed report on the max–min ant system. Technical report (1996)Google Scholar
  24. 24.
    Stützle, T., Hoos, H.: Max–min ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation (ICEC’97), pp. 309–314. IEEE Press (1997)Google Scholar
  25. 25.
    Stützle, T., Hoos, H.H.: Max–min ant system. Future Gener. Comput. Syst. 16(9), 889–914 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Villesen, P.: Fabox: an online FASTA sequence toolbox (2007)Google Scholar
  27. 27.
    Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor. Biol. 99(1), 1–7 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.AℓEDA Group, Department of CSEBUETDhakaBangladesh

Personalised recommendations