Mathematics in Computer Science

, Volume 9, Issue 3, pp 327–344 | Cite as

Variable and Clause Elimination for LTL Satisfiability Checking

  • Martin Suda


We study preprocessing techniques for clause normal forms of LTL formulas. Applying the mechanism of labeled clauses enables us to reinterpret LTL satisfiability as a set of purely propositional problems and thus to transfer simplification ideas from SAT to LTL. We demonstrate this by adapting variable and clause elimination, a very effective preprocessing technique used by modern SAT solvers. Our experiments confirm that even in the temporal setting substantial reductions in formula size and subsequent decrease of solver runtime can be achieved.


Linear temporal logic Satisfiability Preprocessing 

Mathematics Subject Classification

68T15 Theorem proving (deduction, resolution, etc.) 03B35 Mechanization of proofs and logical operations 03B44 Temporal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolotov A., Fisher M., Dixon C.: On the relationship between ω-automata and temporal logic normal forms. J. Logic Comput. 12(4), 561–581 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Clarke E.M., Grumberg O., Hamaguchi K.: Another look at LTL model checking. Form. Methods Syst. Des. 10(1), 47–71 (1997)CrossRefGoogle Scholar
  3. 3.
    Clarke E.M., Grumberg O., Peled D.: Model checking. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  4. 4.
    Degtyarev, A., Fisher, M., Konev, B.: A simplified clausal resolution procedure for propositional linear-time temporal logic. In: TABLEAUX ’02. LNCS, vol. 2381, pp. 85–99. Springer, Berlin (2002)Google Scholar
  5. 5.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: SAT’05. LNCS, vol. 3569, pp. 61–75. Springer, Berlin (2005)Google Scholar
  6. 6.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT’03. LNCS, vol. 2919, pp. 502–518. Springer, Berlin (2003)Google Scholar
  7. 7.
    Fisher, M.: A resolution method for temporal logic. In: IJCAI’91, pp. 99–104. Morgan Kaufmann Publishers Inc., Menlo Park (1991)Google Scholar
  8. 8.
    Fisher M., Dixon C., Peim M.: Clausal temporal resolution. ACM Trans. Comput. Logic 2, 12–56 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: In Protocol Specification Testing and Verification, pp. 3–18. Chapman & Hall, London (1995)Google Scholar
  10. 10.
    Hustadt, U., Konev, B.: Trp++ 2.0: a temporal resolution prover. In: CADE-19. LNCS, vol. 2741, pp. 274–278. Springer, Berlin (2003)Google Scholar
  11. 11.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: TACAS. LNCS, vol. 6015, pp. 129–144. Springer, Berlin (2010)Google Scholar
  12. 12.
    Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of hardware requirements. In: DAC ’06, pp. 821–826. ACM, New York (2006)Google Scholar
  13. 13.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE, Washington (1977)Google Scholar
  14. 14.
    Rozier, K., Vardi, M.: LTL satisfiability checking. In: 14th International SPIN Workshop. LNCS, vol. 4595, pp. 149–167. Springer, Berlin (2007)Google Scholar
  15. 15.
    Rozier, K., Vardi, M.: A multi-encoding approach for LTL symbolic satisfiability checking. In: FM. LNCS, vol. 6664, pp. 417–431. Springer, Berlin (2011)Google Scholar
  16. 16.
    Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: ATVA’11. LNCS, vol. 6996, pp. 397–413. Springer, Berlin (2011)Google Scholar
  17. 17.
    Sistla A.P., Clarke E.M.: The complexity of propositional linear temporal logics. J. ACM 32, 733–749 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Suda, M., Weidenbach, C.: Labelled superposition for PLTL. In: LPAR-18. LNCS, vol. 7180, pp. 391–405. Springer, Berlin (2012)Google Scholar
  19. 19.
    Suda, M., Weidenbach, C.: Labelled superposition for PLTL. Research Report MPI-I-2012-RG1-001, Max-Planck-Institut für Informatik, Saarbrücken (2012)Google Scholar
  20. 20.
    Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance. In: IJCAR. LNCS, vol. 7364, pp. 537–543. Springer, Berlin (2012)Google Scholar
  21. 21.
    Wolper P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99 (1983)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations