Mathematics in Computer Science

, Volume 8, Issue 3–4, pp 479–493 | Cite as

Interval Methods for Model Qualification: Methodology and Advanced Application

  • Julien Alexandre Dit Sandretto
  • Gilles Trombettoni
  • David Daney
Article
  • 89 Downloads

Abstract

An actual model in simulation (e.g. in chemistry) or control (e.g. in robotics) is often too complex to use, and sometimes impossible to obtain. To handle a system in practice, a simplification of the real model is often necessary. This simplification goes through some hypotheses made on the system or the modeling approach. These hypotheses are rarely verified whereas they could lead to an inadmissible model, over approximated for its use. In this paper, we propose a method that qualifies the simplification validity for all models that can be expressed by real-valued variables involved in closed-form relations and depending on parameters. We based our approach on a verification of a quality threshold on the hypothesis relevance. This method, based on interval analysis, checks the acceptance of the hypothesis in a full range of the whole model space, and gives bounds on the quality threshold and on the model parameters. Our approach is experimentally validated on a robotic application.

Keywords

Interval Model simplification Model validation 

Mathematics Subject Classification

65G40 81T80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlas Y.: Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 12(3), 183–210 (1996)CrossRefGoogle Scholar
  2. 2.
    Pacut, A., Kolodziej, W.: Validity of model simplification. In: Proceedings of the 29th IEEE Conference on Decision and Control, 1990, vol. 5, pp. 2904–2905 (1990)Google Scholar
  3. 3.
    Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  4. 4.
    Neumaier A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)MATHGoogle Scholar
  5. 5.
    Jaulin L., Kieffer M., Didrit O., Walter E.: Applied Interval Analysis. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (2003)Google Scholar
  7. 7.
    Horst R., Tuy H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearization for global optimization. In: AAAI 2011, San Francisco, CA, USA (2011)Google Scholar
  9. 9.
    Araya, I., Trombettoni, G., Neveu, B.: Exploiting monotonicity in interval constraint propagation. In: Proc. AAAI, pp. 9–14 (2010)Google Scholar
  10. 10.
    Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Proc. CP, LNCS 4741, pp. 635–650 (2007)Google Scholar
  11. 11.
    Lhomme, O.: Consistency Techniques for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)Google Scholar
  12. 12.
    Kearfott R., Novoa M. III: INTBIS, a portable interval Newton/Bisection package. ACM Trans. Math. Soft. 16(2), 152–157 (1990)CrossRefMATHGoogle Scholar
  13. 13.
    Ming A., Higuchi T.: Study on multiple degree-of-freedom positioning mechanism using wires. 2. Development of a planar completely restrained positioning mechanism. Int. J. Japan Soc. Precis. Eng. 28(3), 235–242 (1994)Google Scholar
  14. 14.
    Irvine H.M.: Cable Structures. MIT Press, USA (1981)Google Scholar
  15. 15.
    Sandretto, J.A.D., Daney, D., Gouttefarde, M.: Calibration of a fully-constrained parallel cable-driven robot. In: RoManSy, Paris (France) (2012)Google Scholar
  16. 16.
    Alexandre dit Sandretto, J.: Etalonnage des robots à câbles: identification et qualification. Ph.D. dissertation [Online] (2013). http://www.theses.fr/2013NICE4059
  17. 17.
    Merlet, J.-P., Daney, D.: Appropriate design of parallel manipulators. Smart Devices and machines for advanced manufacturing, pp. 1–25 (2008)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Julien Alexandre Dit Sandretto
    • 1
  • Gilles Trombettoni
    • 2
  • David Daney
    • 3
  1. 1.Ensta ParisTechPalaiseauFrance
  2. 2.LirmmMontpellierFrance
  3. 3.InriaBordeauxFrance

Personalised recommendations