Mathematics in Computer Science

, Volume 8, Issue 3–4, pp 443–454 | Cite as

Level Sets of the Value Function in Differential Games with Two Pursuers and One Evader. Interval Analysis Interpretation

  • Sergey S. Kumkov
  • Stéphane Le Ménec
  • Valerii S. Patsko


An algorithm for numerical constructing level sets of the value function is shortly described for one class of linear differential games with fixed termination instant. Some model interception problems with one target and two interceptors are considered; all objects are weak maneuverable.


Group differential pursuit-evasion games Linear dynamics Value function Level sets Numerical construction 

Mathematics Subject Classification

Primary 49N70 Secondary 49N90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shima T.: Capture conditions in a pursuit-evasion game between players with biproper dynamics. JOTA 126(3), 503–528 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Shima T., Golan O.M.: Bounded differential games guidance law for dual-controlled missiles. IEEE Trans. Contr. Syst. Tech. 14(4), 719–724 (2006)CrossRefGoogle Scholar
  3. 3.
    Shinar, J., Glizer, V.Y., Turetsky, V.: The effect of pursuer dynamics on the value of linear pursuit-evasion games with bounded controls. In: Krivan, V., Zaccour, G. (eds.) Annals of the International Society of Dynamic Games. Advances in Dynamic Games, vol. 13, pp 313–350. Birkhäuser, Boston (2013)Google Scholar
  4. 4.
    Shinar J., Medinah M., Biton M.: Singular surfaces in a linear pursuit-evasion game with elliptical vectograms. JOTA 43(3), 431–456 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Shima T., Shinar J.: Time-varying linear pursuit-evasion game models with bounded controls. J. Guid. Contr. Dyn. 25(3), 425–432 (2002)CrossRefGoogle Scholar
  6. 6.
    Bryson A.E., Ho Y.-C: Applied optimal control, optimization, estimation and control. Hemisphere publishing corporation. Wiley, New York (1975)Google Scholar
  7. 7.
    Krasovskii, N.N., Subbotin, A.I.: Positional differential games. Nauka, Moscow (1974) (in Russian)Google Scholar
  8. 8.
    Krasovskii N.N., Subbotin A.I.: Game-theoretical control problems. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pontryagin L.S.: Linear differential games. 2. Soviet Math. Dokl. 8, 910–912 (1967)zbMATHGoogle Scholar
  10. 10.
    Pontryagin L.S.: Linear differential games of pursuit. Math. USSR Sb. 112(3), 307–330 (1980)MathSciNetGoogle Scholar
  11. 11.
    Nikol’skii M.S.: On the alternating integral of Pontryagin. Math. USSR Sb. 44(1), 125–132 (1983)CrossRefGoogle Scholar
  12. 12.
    Nikol’skii M.S.: On the lower alternating integral of Pontryagin in linear differential games of pursuit. Math. USSR Sb. 128(1), 35–49 (1985)Google Scholar
  13. 13.
    Jaulin L., Kieffer M., Didrit O., Walter E.: Applied interval analysis. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hansen E., Walster G.W.: Global optimization using interval analysis. 2nd edn. Dekker, New York (2004)zbMATHGoogle Scholar
  15. 15.
    Ganebny S.A., Kumkov S.S., Le Ménec S., Patsko V.S.: Model problem in a line with two pursuers and one evader. Dyn. Games Appl. 2, 228–257 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ganebny, S.A., Kumkov, S.S., Le Ménec, S., Patsko, V.S.: Study of linear game with two pursuers and one evader: different strength of pursuers. In: Cardaliaguet, P., Cressman, R. (eds.) Annals of the International Society of Dynamic Games. Advances in Dynamic Games, vol. 12, pp 269–292. Birkhäuser, Boston (2012)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Sergey S. Kumkov
    • 1
  • Stéphane Le Ménec
    • 2
  • Valerii S. Patsko
    • 1
  1. 1.Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of SciencesUral Federal UniversityEkaterinburgRussia
  2. 2.EADS/MBDAParisFrance

Personalised recommendations