Mathematics in Computer Science

, Volume 8, Issue 2, pp 299–319 | Cite as

On the Parameterization of Rational Ringed Surfaces and Rational Canal Surfaces

  • Bohumír Bastl
  • Bert Jüttler
  • Miroslav Lávička
  • Tino Schulz
  • Zbyněk Šír
Article

Abstract

Ringed surfaces and canal surfaces are surfaces that contain a one-parameter family of circles. Ringed surfaces can be described by a radius function, a directrix curve and vector field along the directrix curve, which specifies the normals of the planes that contain the circles. In particular, the class of ringed surfaces includes canal surfaces, which can be obtained as the envelopes of a one-parameter family of spheres. Consequently, canal surfaces can be described by a spine curve and a radius function. We present parameterization algorithms for rational ringed surfaces and rational canal surfaces. It is shown that these algorithms may generate any rational parameterization of a ringed (or canal) surface with the property that one family of parameter lines consists of circles. These algorithms are used to obtain rational parameterizations for Darboux cyclides and to construct blends between pairs of canal surfaces and pairs of ringed surfaces.

Keywords

Ringed surface Canal surface Rational parameterization Darboux cyclide Dupin cyclide Blending 

Mathematics Subject Classification

65D17 68U05 53A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrondo E., Sendra J., Sendra J.R.: Parametric generalized offsets to hypersurfaces. J. Symbolic Comput. 23, 267–285 (1997)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bastl B., Jüttler B., Lávička M., Schulz T.: Blends of canal surfaces from polyhedral medial surface transform representations. Comput. Aided Des. 43(11), 1477–1484 (2011)CrossRefGoogle Scholar
  3. 3.
    Blum, R.: Circles on Surfaces in the Euclidean 3-Space. In: Geometry and Differential Geometry, vol. 792 of Lecture Notes in Mathematics, pp. 213–221. Springer, Berlin, Heidelberg (1980)Google Scholar
  4. 4.
    Bobenko A., Huhnen-Venedey E.: Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides. Geom. Dedicata. 159(1), 207–237 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cho H.Ch., Choi H.I., Kwon S.-H., Lee D.S., Wee N.-S.: Clifford algebra, Lorentzian geometry and rational parametrization of canal surfaces. Comput. Aided Geom. Des. 21, 327–339 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Choi, H.I., Lee, D.S.: Rational Parametrization of Canal Surface by 4-Dimensional Minkowski Pythagorean Hodograph Curves. In: Proceedings of the Geometric Modeling and Processing 2000, GMP ’00, pp. 301–309. Washington, DC, USA. IEEE Computer Society (2000)Google Scholar
  7. 7.
    Coolidge J.L.: A Treatise on the Circle and Sphere. Clarendon Press, Oxford (1916)MATHGoogle Scholar
  8. 8.
    Darboux J.G.: Sur le contact des courbes et des surfaces. Bull. Sci. Math. 2(4), 348–384 (1880)Google Scholar
  9. 9.
    Dohm M., Zube S.: The implicit equation of a canal surface. J. Symb. Comput. 44, 111–130 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Farin, G., Hoschek, J., Kim, M.-S. (eds): Handbook of Comput Aided Geom D. Elsevier, Amsterdam (2002)Google Scholar
  11. 11.
    Hartmann E.: G n-continuous connections between normal ringed surfaces. Comput. Aided Geom. Des. 18(8), 751–770 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Heo H.-S., Hong S.J., Seong J.-K., Kim M.-S., Elber G.: The intersection of two ringed surfaces and some related problems. Graph. Models 63, 228–244 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Johnstone J.K.: A new intersection algorithm for cyclides and swept surfaces using circle decomposition. Comput. Aided Geom. Des. 10(1), 1–24 (1993)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Krasauskas R.: Minimal rational parametrizations of canal surfaces. Computing 79, 281–290 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Krasauskas R., Mäurer C.: Studying cyclides with Laguerre geometry. Comput. Aided Geom. Des. 17(2), 101–126 (2000)CrossRefGoogle Scholar
  16. 16.
    Krasauskas, R., Zube, S.: Bézier-like Parametrizations of Spheres and Cyclides Using Geometric Algebra. In: Guerlebeck, K. (ed) 9th International Conference on Clifford Algebras and their Applications in Mathematical Physics (2011). http://www.mif.vu.lt/~rimask/en/
  17. 17.
    Landsmann G., Schicho J., Winkler F.: The parametrization of canal surfaces and the decomposition of polynomials into a sum of two squares. J. Symbolic Comput. 32(1–2), 119–132 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Lávička M., Vršek J.: On the representation of Dupin cyclides in Lie sphere geometry with applications. J. Geometry Graph. 13(2), 145–162 (2009)MATHGoogle Scholar
  19. 19.
    Lü W., Pottmann H.: Pipe surfaces with rational spine curve are rational. Comput. Aided Geom. Des. 13(7), 621–628 (1996)CrossRefMATHGoogle Scholar
  20. 20.
    Lubbes, N.: Families of circles on surfaces. arXiv:1302.6710 (2013)
  21. 21.
    Martin, R.R.: Principal Patches—a New Class of Surface Patch Based on Differential Geometry. In: Ten Hagen, P.J.W. (ed) Eurographics ’83, Proceedings of the International Conference and Exhibition. Fourth Annual Conference of the European Association for Computer Graphics, pp. 47–55 (1983)Google Scholar
  22. 22.
    Peternell, M.: Rational Families of Conics and Quadrics. In: The Mathematics of Surfaces, vol. VIII, pp. 369–382. Information Geometers (1998)Google Scholar
  23. 23.
    Peternell M., Pottmann H.: Computing rational parametrizations of canal surfaces. J. Symbolic Comput. 23, 255–266 (1997)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Pottmann H.: Rational curves and surfaces with rational offsets. Comput. Aided Geom. Des. 12(2), 175–192 (1995)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Pottmann H., Peternell M.: Applications of Laguerre geometry in CAGD. Comput. Aided Geom. Des. 15, 165–186 (1998)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Pottmann H., Shi L., Skopenkov M.: Darboux cyclides and webs from circles. Comput. Aided Geom. Des. 29(1), 77–97 (2012)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Shene C.-K.: Blending two cones with Dupin cyclides. Comput. Aided Geom. Des. 15(7), 643–673 (1998)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Takeuchi N.: Cyclides. Hokkaido Math. J. 29(1), 119 (2000)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Zhou P., Qian W.-H.: Blending multiple parametric normal ringed surfaces using implicit functional splines and auxiliary spheres. Graph. Models 73(4), 87–96 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Bohumír Bastl
    • 1
  • Bert Jüttler
    • 2
  • Miroslav Lávička
    • 1
  • Tino Schulz
    • 3
  • Zbyněk Šír
    • 4
  1. 1.University of West BohemiaPlzeňCzech Republic
  2. 2.Johannes Kepler University of LinzLinzAustria
  3. 3.INRIA Méditerranée, Sophia-AntipolisValbonneFrance
  4. 4.Charles University in PraguePragueCzech Republic

Personalised recommendations